|
Alfred University Calculus Initiative - Index |
"Turning Calculus Inside Out and Upside Down"
|
• absolute (global) extrema | ⇒ | |||
• absolute value function | ⇒ |
|
||
derivative | ⇒ | |||
• acceleration function | ⇒ |
|
||
• accumulated change | ⇒ | |||
on TI-84 | ⇒ | |||
• amplitude | ⇒ | |||
• area bounded by a curve | ||||
left-hand approximation | ⇒ | |||
midpoint approximation | ⇒ | |||
net (signed) area | ⇒ | |||
right-hand approximation | ⇒ | |||
• asymptote | ||||
horizontal | ⇒ | |||
vertical | ⇒ |
|
||
• average rate of change | ⇒ | |||
• basic angle | ⇒ | |||
• calculus | ⇒ | |||
• chain rule | ⇒ | |||
• change of base | ||||
exponential | ⇒ | |||
logarithmic | ⇒ | |||
• circle | ⇒ | |||
unit circle | ⇒ | |||
• closed form for summation | ⇒ | |||
• common logarithm | ⇒ | |||
• composite function | ⇒ | |||
derivative (chain rule) | ⇒ | |||
u-substitution | ⇒ |
|
||
• concavity | ⇒ |
|
||
• constant function | ⇒ | |||
definite integral | ⇒ | |||
derivative | ⇒ | |||
Fundamental Theorem for | ⇒ | |||
indefinite integral | ⇒ | |||
• constant multiple rule | ||||
for derivatives | ⇒ | |||
for integrals | ⇒ | |||
for summations | ⇒ | |||
• continuity | ||||
at a point | ⇒ | |||
definition | ⇒ | |||
everywhere | ⇒ | |||
on an interval | ⇒ | |||
• continuous graph | ⇒ |
|
||
• continuous growth/decay model | ⇒ | |||
• critical point | ⇒ | |||
• cubic function | ⇒ | |||
concavity | ⇒ | |||
critical points | ⇒ | |||
derivative | ⇒ | |||
extreme and saddle points | ⇒ | |||
inflection points | ⇒ | |||
intercepts | ⇒ | |||
intervals of increase and decrease | ⇒ |
![]() |
This material is based upon work supported by the National Science Foundation under Grant No. 1140437.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation. |