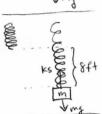


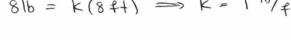
Seat:

Show all work clearly and in order. Please box your answers. Due 10/27/2011.

1. An 8-pound weight stretches a spring 8 feet. Assume a damping force numerically equal to the instantaneous velocity acts on the system. Suppose the weight is released at the equilibrium position with downward velocity of 1 ft/s.


pictures :

(a) Find the equation of motion.



To find the mass m: Weight = mg

$$81b = m(32ft/s^2) \implies m = \frac{8}{32} = \frac{1}{4} slvg$$

To find the spring constact
$$K$$
: $mg = KS$
 $81b = K(841) \implies K = 1 \frac{1b}{41}$

To find damping constat
$$\beta$$
: The second sentence tells us $\beta = 1$

Initial conditions: $x(0) = 0$ and $x'(0) = +1$

$$m \frac{d^2x}{dt^2} + \beta \frac{dx}{dt} + Kx = 0$$

$$\frac{1}{4} \frac{d^2x}{dt^2} + \frac{dx}{dt} + x = 0$$

$$x'' + 4x' + 4x = 0$$

$$x'' + 4x' + 4x' + 4x' + 6x' + 6$$

$$m^{2} + 4m + 4 = 0$$

 $(m+2)(m+2) = 0$
 $m = -2 \mid m = -2$
 $x(+) = C_{1}e^{-2t} + C_{2}te^{-2}$
 $x(0) = C_{1} + 0 = 0 = 0$

some medium that dampers the motion)

(b) What is the velocity of the weight after 1 second (approximate to the nearest hundredth)?

 $x'(+) = -2te^{-2t} + e^{-2t}$ $x'(+) = -2te^{-2t} + e^{-2t}$ $x'(+) = -2e^{-2} + e^{-2} = -e^{-2} \approx -0.14 \text{ fs}$ $x'(+) = (2t(-2e^{-2t}) + (2e^{-2t}) + (2e^{-$