

Show all work clearly and in order. Please box your answers. 10 minutes.

1. Solve the following differential equation:

$$y'' - 4y' + 3y = 2e^x$$

Skp(i): Solve for
$$y_c$$
: $y'' - 4y' + 3y = 0$

$$m^2 - 4m + 3 = 0$$

$$(m-3)(m-1) = 0$$

$$m=3 \mid m=1$$

$$y_c = C_1e^{3x} + C_2e^{x}$$

Form for yp looking at,
$$g(x) = 2e^x$$
:

Adjust looking at yc since e^x is part of yc:

 $y_p = Axe^x$

Now

 $y_p' = Axe^x + Ae^x$
 $y_p'' = Axe^x + Ae^x + Ae^x = Axe^x + 7Ae^x$
 $y_p'' = Axe^x + Ae^x + Ae^x + Ae^x + 3Axe^x = 7e^x$
 $y_p'' = Axe^x + 2Ae^x - 4Ae^x + 3Axe^x = 7e^x$
 $-2Ae^x = 7e^x$
 $y_p'' = Axe^x + 2Ae^x - 4Ae^x + 3Axe^x = 7e^x$
 $y_p'' = Axe^x + 2Ae^x - 4Ae^x - 4Ae^x + 3Axe^x = 7e^x$
 $y_p'' = Axe^x + 2Ae^x - 4Ae^x - 4Ae^x + 3Axe^x = 7e^x$
 $y_p'' = Axe^x + 2Ae^x - 4Ae^x - 4Ae^x + 3Axe^x = 7e^x$
 $y_p'' = Axe^x + 2Ae^x - 4Ae^x + 2Ae^x - 4Ae^x + 3Axe^x = 7e^x$
 $y_p'' = Axe^x + 2Ae^x - 4Ae^x + Ae^x + Ae^x + 2Ae^x$
 $y_p'' = Axe^x + 2Ae^x + Ae^x + Ae$

2. Using the method of undetermined coefficients write the FORM for the particular solution (y_p) using the given value for g(x) and the general solution of the associated homogeneous equation (y_c) . Do NOT solve for the unknown constants, just write the form.

(a)
$$g(x) = 9e^{2x}$$
 and $y_c = C_1e^{-x} + C_2xe^{-x}$. so

General Solution:

Form of y_n :

(b) $g(x) = 9e^{2x}$ and $y_c = C_1e^{2x} + C_2xe^{2x}$. so

Form of y_p :

(c) $g(x) = 3\cos(2x)$ and $y_c = C_1\sin(2x) + C_2\cos(2x)$. so

Axsm (2x) + Bxcos (2x) Form of y_n :