Math 271 - Differential	2 nd Order Linear Equations	Cauchy-Euler Equations (2 nd	Spring/Mass Systems
Equations - Test 3	with Constant Coefficients	Order Linear Equations with	Weight: $w = F$ $\dots = ma$
	Solve: $(0,2)$	Some Special Coefficients)	$w = r_{\text{gravity}} = mg$, where <i>m</i> is the mass and <i>q</i> is the acceleration
Nothern Doff	ay + by + cy = g(x), (0.2) where a h and c are constants	Solve:	due to gravity.
reff@alfred.edu	where <i>u</i> , <i>b</i> , and <i>c</i> are constants.	$ax^2y'' + bxy' + cy = g(x),$ (0.5)	Hooke's Law:
Alfred University	How to find y_c	where a, b , and c are constants.	$F_{ m spring} = ks,$
http://people.alfred.edu/~reff/MATH271/	To find y_c for the homogeneous equation		where k is the spring constant and s is the
	ay'' + by' + cy = 0, (0.3)	How to find y_c	displacement.
2nd Order Linear Equations	find the roots of the Auxiliary Equation:	To find y_c for the homogeneous equation	
2 Order Linear Equations Solve:	$am^2 + bm + c = 0.$ (0.4)	$ax^{2}y'' + bxy' + cy = 0, (0.6)$	provides driving force $f(t)$
$g_{2}(m)g_{1}'' + g_{2}(m)g_{1}' + g_{2}(m)g_{1} = g(m) (0,1)$	Case I: Two real roots m ₁ and m ₂	find the roots of the Auxiliary Equation :	spring provides k
$u_{2}(x)y + u_{1}(x)y + u_{0}(x)y - y(x). (0.1)$	$u = C_1 e^{m_1 x} \pm C_2 e^{m_2 x}$	$am^{2} + (b-a)m + c = 0.$ (0.7)	mass provides m
Method:	Case II: One real root m_1 (repeated root).	Case I: Two real roots m_1 and m_2 .	
1. Find y_c (the general solution to the associated homogeneous equation:	$u_{c} = C_{1}e^{m_{1}x} + C_{2}re^{m_{1}x}$	$y_c = C_1 x^{m_1} + C_2 x^{m_2}.$	There are 3 main types of spring/mass sys-
$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0.$	Case III: Complex conjugate roots	Case II: One real root m_1 (repeated root).	tems, and all are modeled using a 2 nd or- der linear initial value problem. Note: the
2. Find y_p (any particular solution of Fountion (0.1))	$m_1 = \alpha + \beta i \text{ and } m_2 = \alpha - \beta i.$	$y_c = C_1 x^{m_1} + C_2 x^{m_1} \ln(x).$	following linear differential equations all have
3 The general solution of Equation (0.1)	$u_c = e^{\alpha x} [C_1 \cos(\beta x) + C_2 \sin(\beta x)],$	Case III: Complex conjugate roots $m_i = \alpha_i + \beta_i$ and $m_2 = \alpha_i - \beta_i$	constant coefficients. 1. Free Undamped:
is		$\begin{bmatrix} m_1 & -\alpha + \rho t & \text{and} & m_2 & -\alpha - \rho t \\ \hline \end{bmatrix}$	Find m and k using the above concepts.
$y = y_c + y_p.$	$\int \int \frac{dx}{dx} = C_{12} e^{\alpha x} \exp(\beta x) + C_{22} e^{\alpha x} \exp(\beta x)$	$ y_c = x^{\alpha} [C_1 \cos \left(\beta \ln(x)\right) + C_2 \sin \left(\beta \ln(x)\right)], $	d^2x
Variation of Parameters (a method for	$\frac{y_c - C_1 e^{-C_1 (\beta x) + C_2 e^{-S_1 (\beta x)},}}{U_1 - C_2 e^{-S_1 (\beta x) + C_2 e^{-S_1 (\beta x)},}}$	or	$m\frac{d^2}{dt^2} + kx = 0,$
1 Write Equation (0.1) in standard form	How to find y_p TWO METHODS	$\left \left y_c = C_1 x^{\alpha} \cos\left(\beta \ln(x)\right) + C_2 x^{\alpha} \sin\left(\beta \ln(x)\right), \right \right $	$x(t_0) = x_0,$
to find $f(x)$:		How to find y_p	$x'(t_0) = x_1.$
$a'' + \frac{a_1(x)}{x'} + \frac{a_0(x)}{x} - \frac{g(x)}{x}$	If $g(x)$ is polynomial, exponential (e^{kx}) , sine $(\sin(kx))$ cosine $(\cos(kx))$ or combinations of	ONE METHOD	2. Free Damped: Find m and k using the above concepts. β
$g = a_2(x) = a_2(x) = a_2(x) = a_2(x)$	these, then we can use:	You must use Variation of Parameters!	is usually given by the sentence: "there
f(x)	Method of Undetermined Coefficients:		is a damping force numerically equal to β times the instantaneous velocity".
2. Label y_1 and y_2 in your solution for y_c :	1. Write the FORM for y_p based on the form of $g(x)$.	PLAN B: Start All Over and	
$y_c = C_1 \boldsymbol{y_1} + C_2 \boldsymbol{y_2}.$	2. Adjust the FORM for y_p based on y_c .	Unange to Constant Coefficients	$m\frac{d^2x}{dt^2} + \beta\frac{dx}{dt} + kx = 0,$
3. Compute the Wronskian :	Specifically, if any part of the form for	tion into a 2nd order linear equation with con-	$x(t_0) = x_0,$
$ $ $ y_1 y_2 $, ,	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	stant coefficients via the substitution	$x'(t_0) = x_1.$
$ \qquad $	peat this until no part of y_c appears in your form for y_c and each peice of y_c is	$x = e^t$,	3. Driven Motion with Damping:
4. Solve for u_1 and u_2 :	linearly independent.	and then resubstituting $t = \ln(x)$ at the end.	Find m and k using the above concepts. β is usually given by the sentence: "there is a
$y_{1} = \int -y_2 f(x) dx$	3. Find y_p , y'_p and y''_p and plug these into		damping force numerically equal to β times
$ \qquad \qquad$	Equation (0.2) .		the instantaneous velocity". The function $f(t)$ is given as the driving (external) force .
$u_2 = \int \frac{y_1 f(x)}{W} dx.$	4. Solve for the unknown constants in the FORM for y_p to get the final particular		
5 Now we can write the portionier relation	solution y_p .		$m\frac{d^2x}{dt^2} + \beta\frac{dx}{dt} + kx = f(t),$
b. Now we can write the particular solution y_p as:	Otherwise, you can always use Variation of Parameters!		$\begin{array}{c} a t^{-} & a t \\ x(t_0) = x_0, \end{array}$
$y_p = u_1 y_1 + u_2 y_2.$			$x'(t_0) = x_1.$
~1 ~ ~			