Math 152 - Calculus II - Test 4	Absolute Convergence
Nathan Reff reff@alfred.edu	If the series $\sum_{n=0}^{\infty} a_n $ converges, then the series $\sum_{n=0}^{\infty} a_n$ converges. Also, in this case we say that
Alfred University Department of Mathematics	$\sum_{n=1}^{\infty} a_n$ absolutely converges or is absolutely convergent.
http://people.alfred.edu/~reff/MATH152/	$\begin{bmatrix} n=0 \\ \text{Note: absolute convergence is stronger! Absolute convergence} \implies \text{convergence.} \end{bmatrix}$
Ratio Test	
∞	Conditional Convergence $_{\infty}$ $_{\infty}$ $_{\infty}$
Let $\sum_{n=1}^{\infty} a_n$ be a series with positive terms, and suppose that	If the series $\sum_{n=0}^{\infty} a_n$ converges, but the series $\sum_{n=0}^{\infty} a_n $ diverges, then we say that $\sum_{n=0}^{\infty} a_n$ condi-
$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L.$	tionally converges or is conditionally convergent. Note: a good example of a conditionally convergent series to remember is the alternating har- monic series:
Then there are three possibilities:	$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$
1. If $L < 1$, then the series <u>converges</u> .	$\sum_{n=1}^{2} n = 1 - 2 + 3 - 4 + \cdots$
2. If $L > 1$ or $L = \infty$, then the series diverges.	
3. If $L = 1$, then NO INFO.	Ratio Test for Absolute Convergence
Note: this is a good test to try when there are terms like $n!$ or c^n , where c is a constant.	Let $\sum_{n=1}^{\infty} a_n$ be a series with nonzero terms, and suppose that
Root Test	n=1
Let $\sum_{n=1}^{\infty} a_n$ be a series with positive terms, and suppose that	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L.$
$\lim_{n \to \infty} (a)^{1/n} = r$	Then there are three possibilities:
$\lim_{n \to \infty} (a_n)^{1/n} = L.$	1. If $L < 1$, then the series <u>converges absolutely</u> (and therefore converges).
Then there are three possibilities:	2. If $L > 1$ or $L = \infty$, then the series <u>diverges</u> .
1. If $L < 1$, then the series <u>converges</u> .	3. If L = 1, then NO INFO.
2. If $L > 1$ or $L = \infty$, then the series diverges.	Maclaurin Series
3. If $L = 1$, then NO INFO. Note: this is a good test to try when there are terms like n^n , $f(n)^n$, $f(n)^{cn}$ or $f(n)^{g(n)}$.	The <i>n</i> th Maclaurin polynomial of $f(x)$ is:
Alternating Series	$\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} = f(0) + f'(0)x + \frac{f''(0)}{2!} x^{2} + \dots + \frac{f^{(n)}(0)}{n!} x^{n}.$
An alternating series is series of the form	The Maclaurin series of $f(x)$ is:
$\sum_{n=0}^{\infty} (-1)^n a_n = a_1 - a_2 + a_3 - a_4 + \cdots,$	$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \cdots$
or $\sum_{n=0}^{\infty} (-1)^{n+1} a_n = -a_1 + a_2 - a_3 + a_4 - \cdots$	Taylor Series The nth Taylor polynomial of $f(x)$ centered at x_0 is:
Alternating Series Test For an alternating series (in either of the forms) if both	$\left \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \right $
1. the sequence $\{a_n\}$ is decreasing, and	The Taylor series of $f(x)$ centered at x_0 is:
2. $\lim_{n \to \infty} a_n = 0$, then the alternating series converges.	$\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \cdots$
Note: the alternating series test says nothing about divergence. To determine if an alternating series diverges try the Test for Divergence, the Ratio Test for Absolute Convergence, or something else.	$k=0$ Note: a Maclaurin polynomial for $f(x)$ is a Taylor polynomial for $f(x)$ centered at 0 (i.e., $x_0 = 0$). Also, a Maclaurin series for $f(x)$ is a Taylor series for $f(x)$ centered at 0 (i.e., $x_0 = 0$).

Power Series

A power series centered at x_0 (or a power series in $x - x_0$) is a series of the form

$$\sum_{n=0}^{\infty} c_n (x-x_0)^n = c_0 + c_1 (x-x_0) + c_2 (x-x_0)^2 + \cdots$$

BIG QUESTION: for what values of x does the power series converge?

There are only three possibilities:

- 1. The power series only converges at $x = x_0$.
- 2. The power series converges (absolutely) for all real x.
- 3. There exists a positive real number R > 0, such that the power series converges (absolutely) for all $|x x_0| < R$ (so $x_0 R < x < x_0 + R$), the power series diverges for all $|x x_0| > R$ (so $x < x_0 R$ or $x_0 + R < x$) and the power series may converge or diverge when $|x x_0| = R$ (so $x = x_0 R$ or $x = x_0 + R$).

To test this you will always use the **RATIO TEST FOR ABSOLUTE CONVERGENCE**. In the event of case 3 above, you will need to test the endpoints and use some other test. That is, substitute the endpoint $x = x_0 - R$ into the power series and use some test other than the ratio test for absolute convergence (similarly, for $x = x_0 + R$).

The **interval of convergence** for a power series is the interval of all x values for which the power series converges. The center of the power series will be the center of the interval of convergence. The interval of convergence is $[x_0, x_0] = \{x_0\}$ (a single point) in case 1, $(-\infty, \infty)$ in case 2, and one of four possibilities in case 3 depending on whether the endpoints are included or not as mentioned above.

The **radius of convergence** is measure of how wide the interval of convergence is. The radius of convergence is R = 0 in case 1, $R = \infty$ in case 2, and the R mentioned in case 3.

Note 1: Macluarin and Taylor series are examples of power series.

Note 2: a power series will always converge at its center x_0 .

Important Maclaurin Series

1.
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots,$$
 where $-1 < x < 1$

2.
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots,$$
 where $-\infty < x < \infty$

3.
$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots,$$
 where $-\infty < x < \infty$.

4.
$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots,$$
 where $-\infty < x < \infty$

5.
$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + x^2 - x^3 + \cdots,$$
 where $-1 < x < -1$

1

6.
$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n} = 1 - x^2 + x^4 - x^6 + \cdots,$$
 where $-1 < x < 1$

7.
$$\tan^{-1}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots,$$
 where $-1 \le x \le 1$.

8.
$$\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots,$$
 where $-1 < x \le 1$

Differentiating and Integrating Power Series

Let $f(x) = \sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 \cdots$, for some interval of convergence with R > 0. Then we can differentiate and integrate the power series term by term (over the interior of the interval of convergence):

1.
$$f'(x) = c_1 + 2c_2x + 3c_3x^2 + \dots = \sum_{n=0}^{\infty} nc_n x^{n-1}.$$

2. $\int f(x)dx = C + c_0x + \frac{c_1x^2}{2} + \frac{c_3x^3}{3} + \dots = C + \sum_{n=0}^{\infty} \frac{c_n x^{n+1}}{n+1}.$

and the radius of convergence is R for both 1 and 2.

Note: you can do the same for general power series centered at x_0 .