Math 152 - Calculus II - Test 3	Squeeze (Sandwich) Theorem
	Suppose $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ and $\{c_n\}_{n=1}^{\infty}$ be sequences where with
Nathan Reff reff@alfred.edu	$\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} b_n,$
Alfred University Department of Mathematics	and
http://people.alfred.edu/~reff/MATH152/	$a_n \leq b_n \leq c_n$ (for all n), then $\{b_n\}_{n=1}^{\infty}$ also converges to L . That is,
Sequences	$\lim_{n \to \infty} b_n = L$
A sequence is a list of numbers:	Series
$\{a_n\}_{n=1}^{\infty} = \{a_1, a_2, a_3, \ldots\}.$	A series (infinite series) is the sum of the terms of a sequence. That is, something in the form
The sequence $\{a_n\}_{n=1}^{\infty}$ converges (convergent) to L if	$\sum_{i=1}^{\infty}$
$\lim_{n \to \infty} a_n = L,$	$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \cdots$
and diverges (divergent) otherwise.	This sum may be finite (converge) or not (diverge). Every series has two sequences associated to it:
Embedding a Sequence	The sequence of terms:
Consider a sequence $\{a_n\}_{n=1}^{\infty}$. Suppose $f(x)$ is a function of a real variable x where $f(n) = a_n$	The sequence $\{a_k\}_{k=1}^{\infty}$
for $n = 1, 2, 3,$ If	The sequence of partial sums:
$\lim_{x \to \infty} f(x) = L,$	The sequence $\{s_n\}_{n=1}^{\infty}$, where s_n is the <i>n</i> th partial sum defined as
then	$a = \sum_{n=1}^{n} a_n = a_n + a_n + a_n$
$\lim_{n \to \infty} a_n = L.$	$s_n = \sum_{k=1} a_k = a_1 + a_2 + \dots + a_n.$
This method allows us to use L'Hôpital's rule.	
Monotone Sequences	Formal Definition of Convergence for Series: The series
Consider a sequence $\{a_n\}_{n=1}^{\infty}$. The sequence is	$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \cdots$
increasing if $a_1 \leq a_2 \leq \cdots$, 3 WAYS TO CHECK :	<i>k</i> =1
1. $a_{n+1} - a_n \ge 0$, or	converges to S (has finite sum S) if sequence of partial sums converges to S :
2. $\frac{a_{n+1}}{a_n} \ge 1$, or	$\lim_{n \to \infty} s_n = S.$
3. embedding the sequence into $f(x)$, which is increasing (i.e. $f'(x) \ge 0$).	That is,
strictly increasing if $a_1 < a_2 < \cdots$, 3 WAYS TO CHECK:	$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^n a_k = \sum_{k=1}^\infty a_k = S.$
1. $a_{n+1} - a_n > 0$, or	$n \to \infty \qquad n \to \infty \qquad k = 1 \qquad k = 1$ Otherwise, the series diverges .
2. $\frac{a_{n+1}}{a_n} > 1$, or	Otherwise, the series diverges.
3. embedding the sequence into $f(x)$, which is strictly increasing (i.e. $f'(x) > 0$).	Geometric Series
decreasing if $a_1 \ge a_2 \ge \cdots$, 3 WAYS TO CHECK:	A series of the form $\infty \infty$
1. $a_{n+1} - a_n \le 0$, or 2. $a_{n+1} \le 1$ or	$\sum_{n=1}^{\infty} ar^n = \sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots,$
2. $\frac{a_{n+1}}{a_n} \leq 1$, or 2. $\frac{a_{n+1}}{a_n} \leq 1$, or	n=0 $n=1$ is called a geometric series .
3. embedding the sequence into $f(x)$, which is decreasing (i.e. $f'(x) \leq 0$). strictly decreasing if $a_1 > a_2 > \cdots$, 3 WAYS TO CHECK:	If $ r < 1$, then the geometric series <u>converges</u> , and
1. $a_{n+1} - a_n < 0$, or	$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}.$
2. $\frac{a_{n+1}}{a_n} < 1$, or	$\sum_{n=0}^{\infty} ur = \frac{1}{1-r}.$
3. embedding the sequence into $f(x)$, which is strictly decreasing (i.e. $f'(x) < 0$).	If $ r \ge 1$, then the geometric series <u>diverges</u> .

p-Series

A series of the form

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \cdots,$$

is called a *p*-series.

If p > 1, then the *p*-series <u>converges</u>.

If $p \leq 1$, then the *p*-series diverges.

Harmonic Series

This is a *p*-series with p = 1:

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots,$$

which diverges.

Test for Divergence

(i) If
$$\lim_{n \to \infty} a_n \neq 0$$
, then $\sum_{n=1}^{\infty} a_n$ diverges.

(ii) If $\lim_{n \to \infty} a_n = 0$, then NO INFO (the series may converge or diverge).

Integral Test Consider the series $\sum_{n=1}^{\infty} a_n$. If f(x) is a function of a real variable x with $f(n) = a_n$ for all $n = 1, 2, 3, \ldots$ that is <u>continuous</u>, positive and decreasing on $[1, \infty)$, then we can try to use the Integral Test: $\int_{1}^{\infty} f(x) dx \quad \text{AND} \quad \sum_{n=1}^{\infty} a_n$ both converge OR both diverge. That is, (i) If $\int_{1}^{\infty} f(x) dx$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. (ii) If $\int_{1}^{\infty} f(x) dx$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges. **Comparison Test** Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are both series with <u>positive terms</u>. (i) If $\sum_{n=1}^{\infty} b_n$ converges AND $a_n \leq b_n$ for all n, then $\sum_{n=1}^{\infty} a_n$ converges. (ii) If $\sum_{n=1}^{\infty} b_n$ diverges AND $a_n \ge b_n$ for all n, then $\sum_{n=1}^{\infty} a_n$ diverges. Limit Comparison Test Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are both series with positive terms. If $\lim_{n \to \infty} \frac{a_n}{b_n} = c,$ where c is finite, and c > 0, then $\sum_{n=1}^{\infty} a_n$ AND $\sum_{n=1}^{\infty} b_n$ both converge OR both diverge.