TEST 2

Math 271 - Differential Equations		Score:	 out of 100
3/19/2014	Name:		

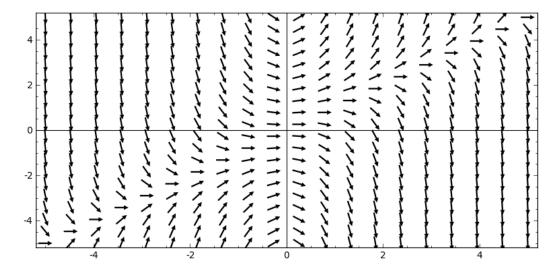
Read all of the following information before starting the exam:

- You have 50 minutes to complete the exam.
- Show all work, clearly and in order, if you want to get full credit. Please make sure you read the directions for each problem. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Please box/circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements.
- This test has 7 problems and is worth 100 points. It is your responsibility to make sure that you have all of the pages!
- Good luck!

1. The following is the direction field for the differential equation

$$\frac{dy}{dx} = xy - x^2,$$

over the region $R = \{(x, y) \mid -5 \le x \le 5, -5 \le y \le 5\}.$



Sketch an approximate solution curve that passes through the following points:

- (a) y(0) = 0.
- (b) y(0) = 1

Use your solution curve that passes through the point y(0) = 0 to estimate the value of y(-2).

$$y(-2) =$$

2. The function $y_1 = \ln(x)$ is a solution to xy'' + y' = 0. Use the reduction of order equation formula to find a second solution $y_2(x)$. (NOTE: you do not need to vertify that y_1 is a solution, just find y_2 .)

3. Determine whether the given set of functions is linearly independent on the interval $(0, \infty)$. SHOW WORK AND CLEARLY STATE whether the set of functions is **linearly independent** or **linearly dependent**.

(a)
$$f_1(x) = e^{2x}$$
, $f_2(x) = e^{3x}$

(b)
$$g_1(x) = -\sin^2(x), g_2(x) = 2\cos^2(x), g_3(x) = 3$$

- 4. Complete all of the following parts. You may not use the auxiliary/characteristic equation method!
 - (a) Verify that $y_1 = x$ and $y_2 = x \ln(x)$ form a fundamental set of solutions of $x^2y'' xy' + y = 0$ on $(0, \infty)$.

(b) Verify that $y_p = 2 + \ln(x)$ forms a particular solution of $x^2y'' - xy' + y = \ln(x)$.

(c) Use (a) and (b) to write the general solution of $x^2y'' - xy' + y = \ln(x)$.

General Solution:

5. Find the general solution to the following:

(a)
$$y'' - 4y' + 5y = 0$$

(b)
$$y''' + 2y'' - 4y' - 8y = 0$$

(c)
$$y^{(6)} - 9y^{(4)} = 0$$

6.	6. Solve the following differential equation using the <u>method of undetermined coefficients</u> :							
$y'' + 3y' + 2y = 4x^2$								
	General Solution:							

Hint: make sure you simplify the Wronskian!								
General Solution:								

7. Solve the following differential equation using the variation of parameters:

 $y'' - 4y' + 4y = (x+1)e^{2x}$