
Newton 

 

Newton is a program that explores the dynamics of applying Newton's method for 

finding zeros of complex valued functions. There are two modes:    

1. Time to Converge, which graphically displays the results of applying Newton’s 

method to a function for various initial seeds. Points in the complex plane are 

colored according to how long it takes for the distance between two successive 

Newton iterates to be within a specified tolerance level. 

2. Root Convergence, which also displays the results of applying Newton’s method 

to a function for various initial seeds. However, in this mode points are colored 

according to which root Newton’s method appears to be converging. 

3. Blend, which also displays the results of applying Newton’s method to a function 

for various initial seeds. Points are colored according to which root Newton’s 

method appears to be converging, but the colors are shaded darker the more 

iterations needed to reach a specified tolerance level. 

 

Upon execution of Newton, we are first asked to choose a mode. When we choose the 

Root Convergence mode and then press the “Go” button, the screen will look like Figure 

1. (Be patient, there are a lot of “complex” calculations taking place to produce the graph 

in Figure 1). 

 

 
Figure 1 

 

The function that is being used to produce the graph in Figure 1 is 𝐹(𝑧) =  𝑧3 −  1.  

Newton’s method generates a sequence of (complex) numbers by starting with an initial 

value 𝑧0 and successive iterations in the sequence are determined by the recursive 

formula 𝑧𝑛+1 =  𝑧𝑛 −  
𝐹(𝑧𝑛)

𝐹′(𝑧𝑛)
, 𝑛 = 0, 1, 2, ⋯.  When Newton’s method converges, it 

always converges to a zero of the function 𝐹(𝑧).   Initially the graph window represents 

that portion of the complex plane for which the real part ranges from -2 to 2 and the 

imaginary part also ranges from -2 to 2. Newton will calculate the first few iterates for 



the function 𝐹(𝑧) with initial value 𝑧0 corresponding to the upper left corner of the graph 

window. If it appears that the Newton sequence will converge to a particular value, the 

upper left pixel is drawn in the color of the first zero of 𝐹(𝑧) found. The process 

continues, going down pixel by pixel.  Each time the bottom of the graph window is 

reached the whole process is continued, but one pixel to the right. Also each time a new 

zero of 𝐹(𝑧) is approximated, a new color is assigned. 

 

The zeros of the function 𝐹(𝑧) =  𝑧3 −  1 are the “cube roots of unity”, 

cos (
2𝑘𝜋

3
) + sin (

2𝑘𝜋

3
) 𝑖, 𝑘 = 0, 1, 2  

 

When  𝑘 = 0 , the cube root of unity is just the real number 1, and whenever Newton’s 

method converges to 1, the pixel corresponding to the initial value used is colored blue. 

When  𝑘 = 1 , the cube root of unity is the complex number cos (
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𝑖 , and whenever Newton’s method converges to this root of unity, the pixel 

corresponding to the initial value used is colored red.  When  𝑘 = 2 , the cube root of 

unity is the complex number cos (
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−
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2
𝑖 , and whenever 

Newton’s method converges to this root of unity, the pixel corresponding to the initial 

value used is colored green.  The resulting graph is called a Newton fractal. 

 

If we wish to change the function 𝐹(𝑧), we go to the status window at the left of the 

screen and type in a new formula in the text box labeled “Function:”  Figure 2 shows the 

resulting Newton fractal when 𝐹(𝑧) =  𝑧3 −  2𝑧 + 2. The areas colored black are those 

points which correspond to initial values for which two successive values of the Newton 

sequence did not get to within a distance of the specified tolerance of .1 within the 

specified maximum number of iterations of 20.  The tolerance level and the maximum 

number of iterations can be changed by editing their values in the status window. 

 

A modification of Newton’s iteration is to start with an initial value 𝑧0 and then generate 

the sequence 𝑧𝑛+1 =  𝑧𝑛 −  𝑎
𝐹(𝑧𝑛)

𝐹′(𝑧𝑛)
, 𝑛 = 0, 1, 2, ⋯, where the constant a is the “relaxation 

factor”.  Initially the relaxation factor is set to 1, but its real part and its imaginary part 

can be adjusted by editing their values in the status window.  Figure 3 shows the fractal 

that is generated when Newton’s method is applied to the function 𝐹(𝑧) =  𝑧3 −  1 with 

relaxation factor 2.  The tolerance level was increased to 0.25 and the maximum number 

of iterations was increased to 60.  Also the portion of the complex plane showing was 

edited:  the real parts and the imaginary parts of the complex numbers can now range 

from -3 to 3.  Be aware that this figure will take a few minutes to complete on many 

personal computers. 

 

Near the bottom of the status window are the “Color Choice” buttons.  If we choose the 

“User defined” button, every time a new approximate zero of 𝐹(𝑧) is found, we will be 

prompted to choose a color, as in Figure 4.  Figure 5 displays the same Newton fractal as 

Figure 3, but with three different colors (yellow, green, cyan) chosen. 
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Figure 3 

 

 

 
Figure 4 

 



 
Figure 5 

 

We can choose a different viewing window either by changing the numbers in the Real 

and Imaginary Range edit boxes or by pressing the Zoom button.  When the Zoom box is 

pressed, we reposition the cursor to one corner of the zoom window, then press “OK”.  A 

“+” symbol appears at that location.  (On ipads simply touch the location of the corner).  

Then we reposition the cursor to the diagonally opposite corner, the press “OK”.  Once 

the “Zoom It” button is pressed, the program automatically “squares” the zoom window, 

increments the zoom level by one, prints the new real and imaginary ranges in the status 

window, and graphs the zoomed portion of the Newton fractal in the right window.  If the 

zoom level is zero, the middle window is used to define the new zoom window; 

otherwise the right window is used.  We can go back to a previous zoom level by 

choosing its number in the zoom level menu.  Figure 6 shows a zoomed portion of the 

fractal of Figure 5. 

 

 
Figure 6 

 



As a final example of the Root Convergence mode we consider the function 𝐹(𝑧) =
 𝑧8 +  15𝑧4 − 16.  Figure 7 shows the result along with a zoom in the upper right hand 

region.  The maximum number of iterations was increased to 60. 

 

 
Figure 7 

 

“Time to Converge” executes Newton’s method on the specified function 𝐹(𝑧) at various 

initial values, but colors the pixel corresponding to an initial value according to how long 

it takes for two successive iterations to come to within the specified tolerance.  In the 

status window the function, relaxation, tolerance, real range, and imaginary range text 

boxes work exactly like their counterparts in “Root Convergence”.  Initially, if the 

distance between the first iteration and the initial value is less than the specified tolerance 

level, the pixel corresponding to that initial value is colored cyan. If the distance between 

the first two iterations is less than the specified tolerance, the pixel corresponding to the 

initial value is colored blue.  If the distance between the third and fourth iterations is less 

than the specified tolerance, the pixel corresponding to the initial value is colored 

magenta. If the distance between the fifth and sixth iterations is less than the specified 

tolerance, the pixel corresponding to the initial value is colored red.  If the distance 

between the seventh and eighth iterations is less than the specified tolerance, the pixel 

corresponding to the initial value is colored forest green.  If the distance between the 

ninth and tenth iterations is less than the specified tolerance, the pixel corresponding to 

the initial value is colored yellow. If the distance between none of the first ten successive 

iterations, is less than the specified tolerance level, then the pixel corresponding to that 

initial value is colored black.  Figure 8 shows the fractal generated in this mode for the 

function  𝐹(𝑧) =  𝑧3 −  1.  

 

The number of iterations required for a specified pixel color can be changed by editing 

the boxes under the heading “Iteration Color Limits” in the status window.  Also if we 

click on one of the colored boxes, a prompt similar to that of Figure 4 appears.  Once to 

“OK” button is pressed, the prompt window disappears and the appropriate box in the 

status window changes colors. Figure 9 shows the result of applying Newton’s method to 

the function 𝐹(𝑧) =  𝑧3 −  1, but the iteration color limits of Figure 7 were all doubled 

and the color yellow was changed to gray. 

 



 

 
Figure 8 

 

 

The Blend mode works much like the “Root Convergence” mode except that even though 

pixels are colored according to which zero of 𝐹(𝑧) Newton’s method is converging, the 

colors are shaded darker the more iterations it takes for successive iterations to get within 

the specified tolerance level. The status window options work exactly like those in the 

Root Convergence mode.  Figure  10 shows the result of applying Newton’s method to 

the function 𝐹(𝑧) =  𝑧5 −  3𝑖𝑧3 −  (5 + 2𝑖)𝑧2 +  3𝑧 + 1. The real and complex ranges 

were each extended to range from -4 to 4. 

 

 

 
Figure 9 



 

 
Figure 10 

 

 

 

 

 

 


