Examples 6.2 – Derivatives and Antiderivatives of Cosine and Sine

1. Compute the following derivatives.

Solution: (a) $\frac{d}{dx} \left(\sin \left(e^{5x} \right) \right) =$

(b)
$$\frac{d}{dt} \left(-5.21\cos(3t - 1.33) \right) =$$

(c)
$$\frac{d}{dx} (\sin x \cos x) =$$

2. Evaluate $\lim_{x\to 0} \frac{\cos x + 3x - 1}{\sin x}$.

Solution:

3. Assuming that the FTC holds for sine and cosine, evaluate $\int_0^{\pi} (5\sin x + 2\cos x) dx$.

Solution:

4. In Lesson 5.2, we learned via *u*-substitution that $\int e^{kx} dx = \frac{1}{k} e^{kx} + C$. That is, when the "inside" of an exponential is a constant multiple of x, then we "pick up" a factor of 1/k when integrating. The same is true for $y = \sin kx$ and $y = \cos kx$. Use this fact to evaluate the following.

Solution: (a) $\int \sin 10x \, dx =$

(b)
$$\int 3\cos 2x \, dx =$$