Activity 3.6‡ – Integrals of Polynomials

FOR DISCUSSION: In your own words, state each of the following:

- The power rule for derivatives and the power rule for integrals;
- The constant multiple and sum/difference rules for integrals;
- The Fundamental Theorem of Calculus for polynomials.

__

1. Evaluate each of the following integrals. You may need to rewrite the integrand first.

(a) \[\int (-2t^3 + 5t^2 + t - 4) \, dt = \]

(b) \[\int \left(3x^{\frac{3}{2}} - \frac{7}{x^2} \right) \, dx = \]

(c) \[\int \sqrt{x} \, dx = \]

‡ This activity has supplemental exercises.
(d) \(\int \left(3x + \frac{5}{\sqrt{x}} \right) dx = \)

(e) \(\int_{-1}^{1} (3u + 2)^2 \, du = \) (HINT: You must expand the integrand before you integrate.)

(f) \(\int_{1}^{4} \left(\frac{2x^3 - 32}{2x^3} \right) dx = \) (HINT: You must first split the integrand into two fractions.)
2. Recall that \(\int f(x) \, dx \) represents the infinite family of antiderivatives of \(f \), each identified by its constant of integration, \(C \). Given a point in the plane, we could find the constant \(C \) that identifies the unique member of the family passing through the given point.

Consider the function \(f(x) = \frac{7}{x^3} - \frac{6}{x^5} \), and suppose that \(F(x) \) is an antiderivative of \(f(x) \).

(a) Find a formula for \(F \) such that \(F(1) = 3 \). That is, find the antiderivative passing through the point \((1, 3)\).

(b) Find a formula for \(F \) such that \(F(2) = -\frac{41}{32} \). That is, find the antiderivative passing through the point \((2, -\frac{41}{32})\).
3. **(OPTIONAL)** Just as the derivative of a product is not the product of the derivatives, the integral of a product is not the product of the integrals. That is,
\[
\int (f(x) \cdot g(x)) \, dx \neq \int f(x) \, dx \cdot \int g(x) \, dx
\]
Later in this course and in Calculus II you will learn how to integrate certain types of products, but be aware that **there is not a “product rule” for integration!**

Think of two simple power functions \(f \) and \(g \) such that the integral of their product is not the product of their integrals. For simplicity, assume that all constants of integration are zero.

Let \(f(x) = \ldots \) and let \(g(x) = \ldots \).

The integral of the product is \(\int f(x) \cdot g(x) \, dx = \ldots \), but the product of the integrals is \(\int f(x) \, dx \cdot \int g(x) \, dx = \ldots \).

4. **(OPTIONAL)** Let’s verify the general properties of the integral.

(a) **Constant Multiple Rule:** Let \(F \) be a function such that \(F' = f \), and let \(k \) be a constant. For simplicity, assume that all constants of integration are zero.

(i) Since \(\frac{d}{dx} (k \cdot F(x)) = \ldots \), it follows that \(\int k \cdot f(x) \, dx = \ldots \).

(ii) Since \(\frac{d}{dx} (F(x)) = \ldots \), it follows that \(\int f(x) \, dx = \ldots \).

(iii) Put Parts (i) and (ii) together to deduce the constant multiple rule.

(b) **Sum/Difference Rule:** Let \(F \) and \(G \) be functions such that \(F' = f \) and \(G' = g \). For simplicity, assume that all constants of integration are zero.

(i) Since \(\frac{d}{dx} (F(x) \pm G(x)) = \ldots \), we have \(\int (f(x) \pm g(x)) \, dx = \ldots \).

(ii) Since \(\frac{d}{dx} (F(x)) = \ldots \), we have \(\int f(x) \, dx = \ldots \).

(iii) Since \(\frac{d}{dx} (G(x)) = \ldots \), we have \(\int g(x) \, dx = \ldots \).

(iv) Put Parts (i) through (iii) together to deduce the sum/difference rule.