Examples 1.4 – Integrals of Constant Functions

1. Evaluate each of the following.

 (a) \((9x - 12)’\) \hspace{1cm} (b) \(\int 9 \, dt\) \hspace{1cm} (c) \((2.991 - 0.423u)’\) \hspace{1cm} (d) \(\int (-0.423) \, dT\)

 Solution: (a) The slope of the linear function \(y = 9x - 12\) is \((9x - 12)’ = 9\).

 (b) The family of linear functions that have slope \(m = 9\) is \(\int 9 \, dt = 9t + C\).

 (c) The slope of the linear function \(y = 2.991 - 0.423u\) is \((2.991 - 0.423u)’ = -0.423\).

 (d) The family of functions that have slope \(m = -0.423\) is \(\int (-0.423) \, dT = -0.423T + C\).

2. If a savings account increases by $110 per month, then how much money is saved from month 5 to month 10?

 Solution: We must compute the net change in the amount in the account over \([5, 10]\) given that the rate of increase is $110 per month. To do so, we need a member of the family

 \[\int 110 \, dt = 110t + C\]

 so we simply choose the one with \(C = 0\). Therefore, by the Fundamental Theorem, we have

 \[\int_5^{10} 110 \, dt = (110t)|_5^{10} = 110(10) - 110(5) = 550 \text{ dollars.}\]

 (We could have computed the answer algebraically by multiplying $110 by 5 months, but only because the rate is constant. We will see that the FTC holds for variable rates as well.)

3. Evaluate \(\int_{-3}^{6} (-4) \, dx\) and sketch the geometrical interpretation of the answer.

 Solution: By the Fundamental Theorem, \(\int_{-3}^{6} (-4) \, dx = (-4x)|_{-3}^{6} = (-4)(6) - (-4)(-3) = -36\), which represents the net signed area between the graph of \(y = -4\) and the \(x\)-axis on \([-3, 6]\):

 ![Graph](image-url)