Activity 1.2 – Linear Functions

1. (a) \(y - 5 = 2(x - 4) \) or \(f(x) - 5 = 2(x - 4) \)

 (b) \(y = 2x - 3 \) or \(f(x) = 2x - 3 \)

 (c) \(x = 3/2 \)

2. (a) Between 1915 and 1920, the population changed by \(3100 - 3250 = -150 \) people, and

 changed at a rate of \(\frac{3100 - 3250}{1920 - 1915} = -30 \) people per year. The negative answers represent

 a decrease in population.

 (b) \(P(t) = -30t + 3250 \) people, where \(t \) is years after 1915.

 (c) \(P(10) = -30(10) + 3250 = 2950 \) people at the end of 1925.

3. (a)

<table>
<thead>
<tr>
<th>Time (t)</th>
<th>Position (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-15</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>105</td>
</tr>
<tr>
<td>4</td>
<td>145</td>
</tr>
</tbody>
</table>

 (b) \(y = s(t) = 40t - 15 \) miles from Bill’s house.

 (c) Set \(40t - 15 = 0 \) to get \(40t = 15 \), or \(t = 15/40 = 0.375 \). This is the time at which the

 position from Bill’s house is zero. That is, they pass Bill’s house after 0.375 hours.

 (d) Since \(s(0) = -15 \), we can conclude that the initial position was 15 miles west of Bill’s.

 (e) \(s'(t) = 40 \) miles per hour (eastward)

4. (a) \(y = s(t) = 40t + C \) miles from Bill’s house

 (b) \(s'(t) = 40 \) miles per hour (eastward)

 (c) Infinitely many, since any line of the form \(40t + C \) has a slope of 40. Examples include

 \(40t - 10, 40t, \) and \(40t + 3 \). The differences between these lines are their \(y \)-intercepts.

 (d) Since the distance traveled at the start of the trip is zero, the constant \(C = 0 \). Therefore,

 \(s(t) = 40t \) miles traveled.