Lesson 8.7 - Modeling Accumulated Change with the TI-84

In Lesson 7.3, we discussed how to analyze the rate of change and inflection of a graph on the TI-84 using the options in the CALCULATE menu. In this lesson, we will focus on accumulated change. Press [2ND] [TRACE] to view the CALCULATE menu.

1:value Input x.
Output $y(x)$. (height)

2:zero
Input lower and upper bounds, and an initial guess.
Output an x such that $y(x)=0$. (x-intercept, root $)$

3:minimum
Input lower and upper bounds, and an initial guess. Output the point at which y has a local minimum.

4:maximum
Input lower and upper bounds, and an initial guess.
Output the point at which y has a local maximum.

5:intersect
Input two curves and an initial guess.
Output the intersection point.

$6: d y / d x$
Input x.
Output $y^{\prime}(x)$. (slope, derivative)

$7: \int f(x) d x \quad$ Net area is the definite integral of $\boldsymbol{y}(\boldsymbol{x})$:
Input lower and upper limits of integration, a and b.
Output $\int_{a}^{b} y(x) d x$.

Total area is the definite integral of $|y(x)|$:
Use option 7 with the absolute value function $|y(x)|$. Press [2ND] [0]
[ENTER] or [MATH] [] [ENTER] to obtain the absolute value function.

