Lesson 8.7 – Modeling Accumulated Change with the TI-84

In Lesson 7.3, we discussed how to analyze the rate of change and inflection of a graph on the TI-84 using the options in the CALCULATE menu. In this lesson, we will focus on accumulated change. Press **[2ND] [TRACE]** to view the CALCULATE menu.

1:value	Input <i>x</i> . Output $y(x)$. (height)	y(x)
2:zero	Input lower and upper bounds, and an initial guess. Output an <i>x</i> such that $y(x) = 0$. (<i>x</i> -intercept, root)	$0 \xrightarrow{x}$
3:minimum	Input lower and upper bounds, and an initial guess. Output the point at which <i>y</i> has a local minimum.	y(x)
4:maximum	Input lower and upper bounds, and an initial guess. Output the point at which <i>y</i> has a local maximum.	y(x)
5:intersect	Input two curves and an initial guess. Output the intersection point.	y(x)
6:dy/dx	Input <i>x</i> . Output $y'(x)$. (slope, derivative)	y'(x)
7:∫f(x)dx	Net area is the definite integral of $y(x)$: Input lower and upper limits of integration, <i>a</i> and <i>b</i> . Output $\int_{a}^{b} y(x) dx$.	$ \begin{array}{c} \int_{a}^{b} y(x) dx \\ + b \\ a \\ \end{array} $
	Total area is the definite integral of $ y(x) $: Use option 7 with the absolute value function $ y(x) $. Press [2ND] [0] [ENTER] or [MATH] [\triangleright] [ENTER] to obtain the absolute value function.	