Lesson 8.6 - Integration by Substitution

Previously we learned that a reverse of the chain rule allows us to evaluate integrals such as $\int e^{-x} d x, \int \cos (\pi x) d x$, and $\int \frac{1}{1+(7 x)^{2}} d x$. In fact, any integral of the form $\int f(k x) d x$ can be evaluated this way as long as we know an antiderivative F of f (see Activity 8.6). We generalize this idea in this lesson.

According to the chain rule, $\frac{d}{d x}(F(g(x))+C)=f(g(x)) \cdot g^{\prime}(x)$, where $f=F^{\prime}$. By reversing this process, we are able to integrate general functions of the form $f(g(x)) \cdot g^{\prime}(x)$. That is,

$$
\int f(g(x)) \cdot g^{\prime}(x) d x=F(g(x))+C
$$

u-substitution for indefinite integrals:

- Look for a composite $f(g(x))$ in the integrand for which the antiderivative of f is known.
- Let $u=g(x)$ ("inside" exponent, radical, parentheses, denominator) so that $d u=g^{\prime}(x) d x$.
- Substitute u and $d u$ to get a new integral in terms of u. This may not always be possible!
- Integrate the new integral. This may not always be possible!
- Replace u with $g(x)$ in the final answer.
- Check your answer by differentiation.
u-substitution for definite integrals: When we apply substitution to a definite integral defined along the x-axis, we turn it into one defined along the new u-axis. Therefore, the old x-limits are not valid for the new integral. One method is to convert both the integrand and limits from x 's to u 's, and then evaluate the definite integral directly over the u-axis using the u-limits. The other method is to convert the integrand from x 's to u 's, evaluate the indefinite integral over the u-axis, convert it back to the x-axis, and evaluate the definite integral over the x-axis using the x-limits. Here is a summary of the methods:

Method 1: Apply u-substitution, and at the same time convert x-limits of integration to u-limits of integration. Formally,

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u=\left.F(u)\right|_{u=g(a)} ^{u=g(b)}=F(g(b))-F(g(a))
$$

Method 2: First apply u-substitution to get $\int f(g(x)) g^{\prime}(x) d x=F(g(x))+C$. Then evaluate the right-hand side at the x-limits. That is,

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\left.F(g(x))\right|_{x=a} ^{x=b}=F(g(b))-F(g(a))
$$

