Homework 8.6 - Integration by Substitution

1. (1 pt) alfredLibrary/AUCI/chapter8/essonGfindefiniteusub5.pg For the indefinite integral

$$
\int x^{2} e^{x^{3}} d x
$$

a good choice for a u-substitution is
$\boldsymbol{u}=$ \qquad
$d u=$ \qquad

After making the substitution into the integral, we have
$\int \longrightarrow=$ \qquad
Therefore, $\int x^{2} e^{x^{3}} d x=$
2. (1 pt) alfredLibrary/AUCI/chapter8/essonf/quiz/indefiniteusub33pet.pg
For the indefinite integral

$$
\int \frac{x+5}{x^{2}+10 x+26} d x
$$

a good choice for a u-substitution is
$\boldsymbol{u}=$ \qquad
$d u=$ \qquad
After making the substitution into the integral, we have
$\int=$ \qquad
Therefore, $\int \frac{x+5}{x^{2}+10 x+26} d x=$ \qquad
3. (1 pt) alfredLibrary/AUCI/chapter8/esson6/definiteusub7.pg Consider the definite integral $\int_{2}^{5}(2 x-2)^{2} d x$.

Then the most appropriate substitution to simplify this integral is
$u=$ \qquad
$d u=$ \qquad

After making the substitution, changing the limits of integration, and simplifying, we obtain
$\int_{2}^{5}(2 x-2)^{2} d x=-\int-\square=$ \qquad
4. (1 pt) alfredLibrary/AUCI/chapter8/lesson6/definiteusub6.pg Consider the definite integral $\int_{1}^{4} x^{2}\left(2+3 x^{3}\right)^{3} d x$.

Then the most appropriate substitution to simplify this integral is
$u=$ \qquad
$d u=$ \qquad

After making the substitution, changing the limits of integration, and simplifying, we obtain
$\int_{1}^{4} x^{2}\left(2+3 x^{3}\right)^{3} d x=-\int--\quad=-$
5. (1 pt) alfredLibrary/AUCI/chapter8/hesson6/definiteusub34pet.pg Evaluate the definite integral using an appropriate u substitution.
$\int_{0}^{\pi / 2} e^{\sin (7 x)} \cos (7 x) d x=$ \qquad

