Examples 8.6 – Integration by Substitution

1. Evaluate $\int 3x^2 \cos(x^3) dx$.

Solution: Note that $\cos(x^3)$ is a composite function. Let $u = x^3$ (inside parentheses) so that $du = 3x^2 dx$. After substituting, the integral becomes

$$\int 3x^2 \cos(x^3) dx = \int \cos(x^3) \cdot 3x^2 dx = \int \cos u \, du = \sin u + C = \sin(x^3) + C$$

2. Evaluate $\int 9x^4 \sqrt{1+4x^5} dx$.

Solution: Note that $\sqrt{1+4x^5}$ is a composite function. Let $u = 1+4x^5$ (inside radical) so that $du = 20x^4 dx$ and $x^4 dx = \frac{1}{20} du$. The substitution yields

$$\int 9x^4 \sqrt{1+4x^5} \, dx = 9 \int \sqrt{1+4x^5} \cdot x^4 \, dx = \frac{9}{20} \int \sqrt{u} \, du = \frac{9}{20} \cdot \frac{2}{3} u^{\frac{3}{2}} + C = \frac{3}{10} \left(1+4x^5\right)^{\frac{3}{2}} + C$$

3. Evaluate the definite integral $\int_0^3 \frac{x+1}{x^2+2x+2} dx$.

Solution: We will demonstrate both methods.

Method 1: Let $u = x^2 + 2x + 2$ (inside denominator) so that du = (2x+2)dx = 2(x+1)dx and $(x+1)dx = \frac{1}{2}du$. Change the *x*-limits to *u*-limits by plugging in x = 0 and x = 3 into $u = x^2 + 2x + 2$ to get u = 2 and u = 17, respectively. Hence,

$$\int_{0}^{3} \frac{x+1}{x^{2}+2x+2} dx = \int_{0}^{3} \frac{1}{x^{2}+2x+2} (x+1) dx = \frac{1}{2} \int_{2}^{17} \frac{1}{u} du = \frac{1}{2} \ln |u|_{2}^{17} = \frac{1}{2} (\ln 17 - \ln 2)$$

Method 2: First, we will find an antiderivative of the integrand. Let $u = x^2 + 2x + 2$ (inside denominator) so that du = (2x+2)dx = 2(x+1)dx and $(x+1)dx = \frac{1}{2}du$. We have

$$\int \frac{x+1}{x^2+2x+2} dx = \int \frac{1}{x^2+2x+2} (x+1) dx = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln|u| + C = \frac{1}{2} \ln|x^2+2x+2| + C$$

Therefore,

$$\int_{0}^{3} \frac{x+1}{x^{2}+2x+2} dx = \frac{1}{2} \ln |x^{2}+2x+2| \Big|_{0}^{3} = \frac{1}{2} (\ln 17 - \ln 2)$$