Activity $8.6^{\ddagger}-$ Integration by Substitution

FOR DISCUSSION: In your own words, describe the two methods for u-substitution.

1. Evaluate each indefinite integral by using an appropriate u-substitution. Be sure to explicitly write down u and $d u$.
(a) $\int e^{4 x+5} d x=$
$u=$
$d u=$
(b) $\int x^{2} e^{x^{3}} d x=$
(c) $\int \frac{1}{9 t+4} d t=$

[^0](d) $\int \frac{x+6}{x^{2}+12 x+10} d x=$
(e) $\int \sin ^{5} \theta \cos \theta d \theta=$
2. Practice "Method 1 " for u-substitution of definite integrals. That is, change the limits of integration from x-limits to u-limits. Then use the FTC to evaluate the integral in terms of u.
(plug u-limits into antiderivative)
(a) $\int_{0}^{1} x^{3}\left(1+2 x^{4}\right)^{3} d x=\int \quad d u=$
$u=$ \qquad
$d u=$ \qquad
$$
x^{3} d x=
$$
$x=0 \rightarrow u=$ \qquad
$x=1 \rightarrow u=$
(b) $\int_{1}^{2} x \cdot \sqrt[3]{5-x^{2}} d x$
(Follow the procedure shown in Part (a).)
(c) $\int_{0}^{\pi / 4} e^{\sin 2 x} \cos 2 x d x$
3. Practice "Method 2 " for u-substitution of definite integrals. That is, first evaluate the indefinite integral using u-substitution to get the antiderivative in terms of x. Then use the FTC to evaluate the integral in terms of x.
(a) $\int_{0}^{1} \frac{3 x^{7}}{\left(x^{8}+1\right)^{2}} d x$
$$
u=
$$
$$
d u=
$$
\qquad
(find the antiderivative in terms of x)
$$
\int \frac{3 x^{7}}{\left(x^{8}+1\right)^{2}} d x=\int \longrightarrow d u=
$$
(use your antiderivative from above and plug in x-limits)
$\int_{0}^{1} \frac{3 x^{7}}{\left(x^{8}+1\right)^{2}} d x=$
(b) $\int_{1}^{3} \frac{(\ln x)^{2}}{x} d x$
(Follow the procedure shown in Part (a).)

[^0]: ${ }^{\dagger}$ This activity is referenced in Lesson 8.6.
 ${ }^{\ddagger}$ This activity has supplemental exercises.

