
Lesson 8.5 – The Fundamental Theorem of Calculus (Part 2) 

Part 2 of the FTC says that every continuous function has an antiderivative. 

 

 

 

 

 

 

 

 
 

Proof:  The function dttfxF
x

a )()(  is the net area bounded by f and the t-axis on [a, x].  We 

want to show that fF  , in which case F is an antiderivative of f .  By the definitions of the 

derivative of F, and of F itself, we have  
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Since f is continuous on ],[ xxx  , the MVT for integrals (Activity 8.4) implies that there is a 

point t in ],[ xxx   such that   xtfxxxtfdttf
xx

x
 

 )()()()( .  Therefore, 
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Now t is in the interval ],[ xxx  , so as 0x , xt  , and it follows that )()( xftf 

 by 

continuity.  We have shown that )()( xfxF  , and the proof is complete.                                  

 

If F is a composite, say dttfxgF
xg

a
 )())((

)(

 , then the chain rule applies and Part 2 becomes 
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 Fundamental Theorem of Calculus, Part 2:   If    is 

continuous on [a, b], then the function defined by  

             
 

 
 for all x in [a, b] is an antiderivative of    on 

[a, b].  That is, 


