Homework 8.5 - The Fundamental Theorem of Calculus (Part 2)

1. (1 pt) alfredLibrary/AUCI/chapter8/lesson5/quiz/FTCpart21pet.pg Let $f(x)=\int_{3}^{x} \frac{t^{6}}{e^{t}+2} d t$.

By Part 2 of the Fundamental Theorem of Calculus,
$f^{\prime}(x)=$ \qquad
and
$f^{\prime}(2)=$ \qquad
2. (1 pt) alfredLibrary/AUCI/chapter8/lesson5/FTC8pet.pg

Suppose $f(x)=\int_{0}^{x} \frac{t^{2}-25}{4+\cos ^{2}(t)} d t$.
For what value(s) of x does $f(x)$ have a local maximum? Enter a number, a list of numbers separated by commas, or NONE .
(HINT: Use Part 2 of the FTC to find $f^{\prime}(x)$. Then perform a sign test.)
$\boldsymbol{x}=$
3. (1 pt) alfredLibrary/AUCI/chapter8/lesson5/FTC9pet.pg

Use Part 2 of the Fundamental Theorem of Calculus to find the derivative of

$$
F(x)=\int_{3 x}^{3} \sin \left(t^{4}\right) d t
$$

$F^{\prime}(x)=$
4. (1 pt) alfredLibrary/AUCI/chapter8/lesson5/FTC10pet.pg

If $f(x)=\int_{1}^{x^{3}} \sqrt{t^{2}+9} d t$,
then $f^{\prime}(x)=$ \qquad -.

5. (1 pt) alfredLibrary/AUCI/chapter8/kesson5/graphical.pg

 Let $g(x)=\int_{0}^{x} f(t) d t$, where f is the function whose graph is shown. Answer the following questions only on the interval [0,10$]$. Enter multiple answers as a comma-separated list. Click on the graph to enlarge the image.
(a) At what value(s) of x does g have a local maximum?
$\boldsymbol{x}=$ \qquad
(b) At what value(s) of x does g have a local minimum?
$x=$ \qquad
(c) At what value(s) of x does g have an absolute maximum?
$\boldsymbol{x}=$

$$
=
$$

\qquad -

