Activity 8.5^{\ddagger} - The Fundamental Theorem of Calculus (Part 2)

FOR DISCUSSION: State Part 2 of the Fundamental Theorem of Calculus in your own words.
Geometrically, what does Part 2 of the FTC measure?

1. Find the derivative (with respect to x) of each function. Remember to rewrite the integral with the function of x in the upper limit, and remember to apply the chain rule if necessary.
(a) $f(x)=\int_{0}^{x} \sqrt{t^{5}+5 t^{2}} d t$
(b) $y(x)=\int_{x}^{1} \frac{t^{3}}{e^{t}+4} d t$
(c) $F(x)=\int_{3}^{2 x} \arctan \left(t^{2}+10\right) d t$
(d) $H(x)=\int_{1}^{e^{x}} \frac{1}{\sqrt[3]{t^{2}+2 t}} d t$
(e) $g(x)=\int_{5 x^{2}}^{1} \cos (\ln (t)) d t$

[^0]2. Let $G(x)=\int_{1}^{3 x} e^{-t^{2}} d t$. Evaluate each of the following.
(a) $G\left(\frac{1}{3}\right)=$
(b) $G^{\prime}(x)=$
(c) $G^{\prime}(0)=$
3. Let $F(x)=\int_{0}^{x^{2}}(t-1) e^{t} d t$.
(a) Compute $F^{\prime}(x)$, and then determine the critical points of F.
(b) Compute $F^{\prime \prime}(x)$, and then determine the inflection points of F.

[^0]: ${ }^{\text {T This activity has supplemental exercises. }}$

