Homework 8.4 - The Fundamental Theorem of Calculus (Part 1)

1. (1 pt) alfredLibrary/AUCI/chapter8/lesson4/FTC3pet.pg

Evaluate the definite integral if possible. Otherwise, type "improper" if the integral is improper.
$\int_{-5}^{5} \frac{8}{x^{3}} d x=$
2. (1 pt) alfredLibrary/AUCI/chapter8/lesson4/FTC4pet.pg Evaluate the definite integral if possible. Otherwise, type "improper" if the integral is improper.

$$
\int_{1}^{6} 5+\frac{1}{x}+\frac{1}{x^{2}} d x=
$$

3. (1 pt) alfredLibrary/AUCI/chapter8/lesson4/FTC5pet.pg

Evaluate the definite integral if possible. Otherwise, type "improper" if the integral is improper.

$$
\int_{-1}^{1} e^{3 x} d x=
$$

\qquad
4. (1 pt) alfredLibrary/AUCI/chapter8/hesson4/FTC6pet.pg

Evaluate the definite integral if possible. Otherwise, type "improper" if the integral is improper.
$\int_{0}^{\pi} 2 \sin (x) d x=$ \qquad
5. (1 pt) alfredLibrary/AUCI/chapter8/lesson4/quì/FTC4pet.pg Use Part 1 of the Fundamental Theorem of Calculus to evaluate the definite integral.
$\int_{0}^{0.4} \frac{d x}{\sqrt{1-x^{2}}}=$ \qquad

