Examples 8.4 - The Fundamental Theorem of Calculus (Part 1)

1. Use the FTC to evaluate $\int_{1}^{9} \frac{3}{\sqrt{t}} d t$.

Solution: $\int_{1}^{9} \frac{3}{\sqrt{t}} d t=3 \int_{1}^{9} t^{-1 / 2} d t=\left.3 \cdot \frac{t^{1 / 2}}{1 / 2}\right|_{1} ^{9}=\left.6 \sqrt{t}\right|_{1} ^{9}=6(\sqrt{9}-\sqrt{1})=12$
2. If g is a function such that $g(2)=10$ and $g(5)=14$, then what is the net area bounded by g^{\prime} on the interval $[2,5]$?

Solution: The net area bounded by g^{\prime} on the interval $[2,5]$ is $\int_{2}^{5} g^{\prime}(x) d x$. By the FTC,

$$
\int_{2}^{5} g^{\prime}(x) d x=\left.g(x)\right|_{2} ^{5}=g(5)-g(2)=14-10=4
$$

3. Explain why we cannot use the FTC to evaluate $\int_{-1}^{1} \frac{1}{x^{2}} d x$?

Solution: In order to use the Fundamental Theorem of Calculus, the integrand must be continuous on the interval of integration. Since $y=\frac{1}{x^{2}}$ is not continuous at $x=0$ (the graph has a vertical asymptote there), and 0 is in the interval $[-1,1]$, the FTC cannot be used. See Activity 8.4 for more details.

The integral $\int_{-1}^{1} \frac{1}{x^{2}} d x$ is said to be improper. Improper integrals are studied in Calculus II.

