Activity 8.4 ${ }^{1+\boldsymbol{+}}$ - The Fundamental Theorem of Calculus (Part 1)

FOR DISCUSSION: State Part 1 of the Fundamental Theorem of Calculus in your own words. Geometrically, what does Part 1 of the FTC measure?

1. If the given integral satisfies the hypothesis for Part 1 of the FTC, then compute it. Otherwise, explain why the FTC cannot be used. (HINT: Consider continuity.)
(a) $\int_{1}^{\sqrt{2}} \frac{8}{1+x^{2}} d x=$
(b) $\int_{1}^{2} \frac{4}{x^{3}} d x=$
(c) $\int_{0}^{2} \frac{4}{x^{3}} d x=$
(d) $\int_{0}^{3} \frac{1}{x-2} d x=$

[^0](e) $\int_{4}^{9} 6 \sqrt{x} d x=$
(f) $\int_{0}^{\pi} 3 \cos x d x=$
(g) $\int_{-1}^{1} e^{5 x} d x=$
(h) $\int_{0}^{0.5} \frac{1}{\sqrt{1-x^{2}}} d x=$
2. The FTC cannot be used to compute $\int_{-1}^{1} \frac{1}{x^{2}} d x$ since the integrand is not continuous on $[-1,1]$.
(a) Suppose we forgot to check for continuity. Use the FTC to evaluate the integral. You will get an answer...
$\int_{-1}^{1} \frac{1}{x^{2}} d x$
(b) View or sketch the graph of $y=\frac{1}{x^{2}}$ on $[-1,1]$. Explain why your answer from Part (a) must be incorrect.
3. (OPTIONAL) The Mean Value Theorem for Integrals states that if f is continuous on [$a, b]$, then there is at least one point t^{*} in $[a, b]$ such that $\int_{a}^{b} f(x) d x=f\left(t^{*}\right)(b-a)$. (proof below)
(a) Let $f(x)=x^{2}$ on $[0,3]$. Find t^{*} in $[0,3]$ such that $\int_{a}^{b} f(x) d x=f\left(t^{*}\right)(b-a)$.
(b) Mark the point $\left(t^{*}, f\left(t^{*}\right)\right)$ on the graph of $f(x)=x^{2}$.
(c) In terms of area, what does $\int_{a}^{b} f(x) d x$ represent? Shade this area on the graph.
(d) In terms of area, what does $f\left(t^{*}\right)(b-a)$ represent? Shade this area on the graph.

(e) Imagine the area bounded by f "settling down" into the shape of a rectangle. The MVT for Integrals helps us to find the height $f\left(t^{*}\right)$ of the rectangle.

Proof: Suppose that f is continuous on $[a, b]$. By the EVT, f assumes a minimum value m and a maximum value M on $[a, b]$. Then for all x in $[a, b]$,

$$
\begin{gathered}
m \leq f(x) \leq M \\
\int_{a}^{b} m d x \leq \int_{a}^{b} f(x) d x \leq \int_{a}^{b} M d x \\
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a) \\
m \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq M
\end{gathered}
$$

By the IVT, f attains all values between m and M, including $\frac{1}{b-a} \int_{a}^{b} f(x) d x$. Therefore, there is
a t^{*} in $[a, b]$ such that $f\left(t^{*}\right)=\frac{1}{b-a} \int_{a}^{b} f(x) d x$. It follows that $\int_{a}^{b} f(x) d x=f\left(t^{*}\right)(b-a)$.

[^0]: ${ }^{1}$ This activity contains new material.
 ${ }^{\dagger}$ This activity is referenced in Examples 8.4 and Lesson 8.5.
 ${ }^{\ddagger}$ This activity has supplemental exercises.

