Homework 8.3 - Rolle's Theorem and the Mean Value Theorem

1. (1 pt) alfredLibrary/AUCI/chapter8/lesson3/MVT3pet.pg Consider the function $f(x)=4 x^{3}-4 x$ on the interval $[-5,5]$. Find the average or mean slope of the function on this interval:
$\frac{f(5)-f(-5)}{5-(-5)}=$ \qquad
By the Mean Value Theorem, we know there exists at least one c in the open interval $(-5,5)$ such that $f^{\prime}(c)$ is equal to this average slope. For this problem, there are two values of c that work.

The smaller one is $c=$ \qquad
and the larger one is $c=$ \qquad
2. (1 pt) alfredLibrary/AUCI/chapter8/lesson3/quiz/MVT2pet.pg Consider the function $f(x)=\frac{1}{x}$ on the interval $[3,9]$. Find the average or mean slope of the function on this interval:
$\frac{f(9)-f(3)}{9-(3)}=$ \qquad
By the Mean Value Theorem, we know there exists a c in the open interval $(3,9)$ such that $f^{\prime}(c)$ is equal to this average slope. For this problem, there is only one c that works. Find it.
$\boldsymbol{c}=$
3. ($\mathbf{1 p t)}$ alfredLibrary/AUCI/chapter8/esson3/continuity1pet.pg For each function, decide whether it is continuous on the given
closed interval by answering " y " for yes or "n" for no. Note that you only have 2 attempts for this problem.
(a) $f(x)=x^{3}-x^{2}+x$ on $[1,10]:$ \qquad
(b) $f(x)=\frac{x-1}{x-2}$ on $[-3,1]:$
(c) $f(x)=\frac{x+1}{x+3}$ on $[-3,5]$: \qquad
(d) $f(x)=\left|x^{2}-4\right|$ on $[0,4]:$

4. (1 pt) alfredLibrary/AUCI/chapter8/esson $3 /$ diff1pet.pg

For each function, decide whether it is differentiable on the given closed interval by answering " y " for yes or " n " for no. Note that you only have 2 attempts for this problem.
(a) $f(x)=x^{3}-x^{2}+x$ on $[1,10]$: \qquad
(b) $f(x)=\frac{x-1}{x-2}$ on $[-3,1]$: \qquad
(c) $f(x)=\frac{x+1}{x+3}$ on $[-3,5]$: \qquad
(d) $f(x)=\left|x^{2}-4\right|$ on $[0,4]$: \qquad

