Activity 8.3 - Rolle's Theorem and the Mean Value Theorem

1. (a) Set $f^{\prime}(c)=3 c^{2}-1=\frac{f(2)-f(-2)}{2-(-2)}=\frac{8-(-4)}{4}=3$ to get $c= \pm \sqrt{\frac{4}{3}}$ in the interval $(-2,2)$.
(b) Set $g^{\prime}(c)=-\frac{1}{c^{2}}=\frac{g(5)-g(3)}{5-3}=\frac{\frac{1}{5}-\frac{1}{3}}{2}=-\frac{1}{15}$ to get $c= \pm \sqrt{15}$, but only $\sqrt{15}$ is in $(3,5)$.
2. (a) Since f has a vertical asymptote at $x=0$, it is not continuous on $[0,4]$. Since it is not continuous at $x=0$, it is not differentiable at $x=0$.
(b) Since g only has one discontinuity at $x=6$, it is continuous on $[0,4]$. Since g^{\prime} is undefined only at $x=6$ (use the quotient rule), g is differentiable everywhere except at $x=6$. In particular, it is differentiable on $[0,4]$.
(c) Since h has a vertical asymptote at $x=-3$, it is not continuous on $[-4,5]$. Since it is not continuous at $x=-3$, it is not differentiable at $x=-3$.
(d) Since $F(x)=\left\{\begin{array}{cl}-x^{2}+x+6, & \text { if } x<3 \\ x^{2}-x-6, & \text { if } x \geq 3\end{array}\right.$, it follows that $F^{\prime}(x)=\left\{\begin{array}{cl}-2 x+1, & \text { if } x<3 \\ 2 x-1, & \text { if } x>3\end{array}\right.$.

From the left of $3, F$ has a slope of -5 , and from the right of $3, F$ has a slope of 5 . Therefore, F is not differentiable at $x=3$ (graph has a corner), and hence it is not differentiable on $[1,4]$. It is continuous everywhere, however, as is seen by substituting $x=3$ into the piecewise formulas for F.
3. (There are many possible correct answers.)

4. (There are many possible correct answers.)
$g(x)$

5. Your average velocity between $8: 00$ and $8: 03$ is $\frac{\Delta \text { position }}{\Delta \text { time }}=\frac{4 \text { miles }}{3 \text { minutes }} \times \frac{60 \text { minutes }}{1 \text { hour }}=80 \mathrm{mi} / \mathrm{h}$.

By the MVT, there exists a time between 8:00 and 8:03 at which your instantaneous velocity was equal to your average velocity. In other words, you are guilty of traveling at a speed of $80 \mathrm{mi} / \mathrm{h}$ during this time interval.

