FOR DISCUSSION: Describe what it means for fo be continuous on the interval $[a, b]$.
Describe what it means forf to be differentiable on the interval $[a, b]$.

1. (a) Let $f(x)=x^{3}-x+2$. Find all numbers c in $(-2,2)$ such that $f^{\prime}(c)=\frac{f(2)-f(-2)}{2-(-2)}$.
(b) Let. $g(x)=\frac{1}{x}$. Find all numbers c in $(3,5)$ such that $g^{\prime}(c)=\frac{g(5)-g(3)}{5-3}$.
2. For each function, decide if it is continuous on the given interval. Then decide if it is differentiable on the given interval. Justify your answers.
(a) $f(x)=\frac{x-1}{x^{2}+2 x}$ on [0, 4].
(b) $g(x)=\frac{x^{2}-1}{x-6}$ on $[0,4]$.
(c) $h(x)=\frac{x+1}{x+3}$ on $[-4,5]$.
(d) $F(x)=\left|x^{2}-x-6\right|$ on $[1,4]$.
3. Sketch the graph of a function f that is continuous on $[0,5]$, differentiable on $(0,5)$, and such that $f(0)=f(5)=0$. Mark all values of c that satisfy Rolle's Theorem.
4. Sketch the graph of a function g that is continuous on $[0,5]$, differentiable on $(0,5)$, and such that $g(0) \neq 0$ and $g(5) \neq 0$. Mark all values of c that satisfy the Mean Value Theorem.

5. (OPTIONAL) Suppose you are driving westbound along I-86 in western New York, where the posted speed limit is $65 \mathrm{mi} / \mathrm{h}$. As you pass the Hornell exit at 8:00 a.m., a police cruiser records your speed as $65 \mathrm{mi} / \mathrm{h}$. Just before the Almond exit, four miles down the road, a second cruiser records your speed as $60 \mathrm{mi} / \mathrm{h}$ at 8:03 a.m. Explain why you are guilty of speeding.
