Quiz 8.2 - The Definition of Net Area

1. | (1 pt) alfredLibrary/AUCV/chapter8/lesson2/quiz- |
| :--- |
| /rightriemannsum12pet.pg |

To compute $\int_{a}^{b} f(x) d x$ using a Riemann sum and the definition of the definite integral, we first divide the interval $[a, b]$ into n subintervals of equal width Δx. Then we choose any point x_{k}^{*} in the $k^{t h}$ subinterval $\left[x_{k-1}, x_{k}\right]$. Common choices include left-hand endpoints, midpoints, and right-hand endpoints:

LH $x_{k}^{*}=a+(k-1) \Delta x$
$\operatorname{Mid} x_{k}^{*}=a+\left(k-\frac{1}{2}\right) \Delta x$
RH: $x_{k}^{*}=a+k \Delta x$
We will use a right hand Riemann sum to compute $\int_{-8}^{-7.5} 18 x^{2} d x$.
(a) For n subintervals, the width of each subinterval is
$\Delta x=$ \qquad
(b) If we substitute the lower limit a and Δx into the formula for right-hand endpoints given above, we obtain
$x_{k}^{*}=$ \qquad for $k=1,2,3, \ldots, n$.
(c) The height of the $k^{t h}$ rectangle is
$f\left(x_{k}^{*}\right)=$ \qquad
(d) The area of the k^{h} rectangle is (as powers of k)
$f\left(x_{k}^{*}\right) \Delta x=$ \qquad
$=$ \qquad $+$ \qquad $k+$ \qquad
(e) The right hand Riemann sum is given by
$R_{n}=\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x$

(f) Finally,
$\int_{-8}^{-7.5} 18 x^{2} d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x=$ \qquad
2. (1 pt) alfredLibrary/AUCI/chapter8/esson2/quiz/defintegral1pet.pg Use the properties of the definite integral to evaluate $\int_{0}^{16} \mid x-$ $8 \mid d x$

Answer. \qquad

