Activity 8.2[‡] – The Definition of Net Area

FOR DISCUSSION: In your own words, explain the meaning of each symbol in the expression

$$\lim_{n \to +\infty} \sum_{k=1}^{n} f(x_k^*) \Delta x$$

1. Use the limit definition of the definite integral with right-hand endpoints to evaluate $\int_{1}^{2} 3x^{2} dx$ by following the sequence of computations. Simplify your work at each step.

 $a = \underline{\qquad} \qquad b = \underline{\qquad} \qquad \Delta x = \underline{\qquad} \qquad x_k^* = a + \Delta x \cdot k = \underline{\qquad}$ $f(x_k^*) =$

 $f(x_k^*)\Delta x =$

 $\sum_{k=1}^{n} f(x_k^*) \Delta x =$

(closed form)

$$\lim_{n \to +\infty} \sum_{k=1}^{n} f(x_k^*) \Delta x =$$

Therefore, $\int_{1}^{2} 3x^2 dx =$

[‡] This activity has supplemental exercises.

2. Use the limit definition of the definite integral with right-hand endpoints to evaluate $\int_0^3 (2x^2 - x) dx$ by following the sequence of computations. Simplify your work at each step.

$$a = \underline{\qquad} \qquad b = \underline{\qquad} \qquad \Delta x = \underline{\qquad} \qquad x_k^* = a + \Delta x \cdot k = \underline{\qquad}$$
$$f(x_k^*) =$$

$$f(x_k^*)\Delta x =$$

$$\sum_{k=1}^{n} f(x_k^*) \Delta x =$$

$$\lim_{n \to +\infty} \sum_{k=1}^n f(x_k^*) \Delta x =$$

Therefore,
$$\int_0^3 (2x^2 - x) dx =$$

3. The velocity (in m/s) of an object is given by $v(t) = t^2 - 2t$. Use the properties of the definite integral and the Fundamental Theorem to find the total distance traveled on [0, 5]. That is, compute $\int_0^5 |t^2 - 2t| dt$.

4. Practice the properties of the definite integral.

(a) If
$$\int_{-1}^{2} f(x) dx = 41$$
, then $\int_{2}^{-1} f(x) dx =$

(b) If
$$\int_{2}^{10} g(x) dx = 15$$
 and $\int_{6}^{10} g(x) dx = 21$, then $\int_{2}^{6} g(x) dx = 21$

(c) If
$$\int_{3}^{5} h(x) dx = 6$$
, then $\int_{3}^{5} (4h(x) - 3) dx =$

5. (**OPTIONAL**) Verify some of the properties of the definite integral stated in Lesson 8.2 using the properties of summations, the limit laws, and the definition of the definite integral:

$$\int_{a}^{b} f(x)dx = \lim_{n \to +\infty} \sum_{k=1}^{n} f(x_{k}^{*}) \cdot \frac{b-a}{n}$$

(a) Write $\int_{a}^{a} f(x)dx$ in limit form. Show that $\int_{a}^{a} f(x)dx = 0$.

(b) Write $\int_{b}^{a} f(x) dx$ in limit form. Show that $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$.

(c) Write $\int_{a}^{b} k \cdot f(x) dx$ in limit form. Show that $\int_{a}^{b} k \cdot f(x) dx = k \cdot \int_{a}^{b} f(x) dx$.

(d) Write $\int_{a}^{b} (f(x) \pm g(x)) dx$ in limit form. Show that $\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$