Activity 8.2^{\ddagger} - The Definition of Net Area

FOR DISCUSSION: In your own words, explain the meaning of each symbol in the expression

$$
\lim _{n \rightarrow+\infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x
$$

1. Use the limit definition of the definite integral with right-hand endpoints to evaluate $\int_{1}^{2} 3 x^{2} d x$ by following the sequence of computations. Simplify your work at each step.

$$
\begin{aligned}
& a=_\quad b=_\quad \Delta x=_\quad x_{k}^{*}=a+\Delta x \cdot k= \\
& f\left(x_{k}^{*}\right)= \\
& f\left(x_{k}^{*}\right) \Delta x= \\
& \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x= \\
& \lim _{n \rightarrow+\infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x=
\end{aligned}
$$

Therefore, $\int_{1}^{2} 3 x^{2} d x=$

[^0]2. Use the limit definition of the definite integral with right-hand endpoints to evaluate $\int_{0}^{3}\left(2 x^{2}-x\right) d x$ by following the sequence of computations. Simplify your work at each step.
\[

$$
\begin{aligned}
a & =_\quad b=_\quad \Delta x=\ldots \\
f\left(x_{k}^{*}\right) & =
\end{aligned}
$$
\]

$$
f\left(x_{k}^{*}\right) \Delta x=
$$

$$
\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x=
$$

$$
\lim _{n \rightarrow+\infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x=
$$

Therefore, $\int_{0}^{3}\left(2 x^{2}-x\right) d x=$
3. The velocity (in m / s) of an object is given by $v(t)=t^{2}-2 t$. Use the properties of the definite integral and the Fundamental Theorem to find the total distance traveled on [0, 5]. That is, compute $\int_{0}^{5}\left|t^{2}-2 t\right| d t$.
4. Practice the properties of the definite integral.
(a) If $\int_{-1}^{2} f(x) d x=41$, then $\int_{2}^{-1} f(x) d x=$
(b) If $\int_{2}^{10} g(x) d x=15$ and $\int_{6}^{10} g(x) d x=21$, then $\int_{2}^{6} g(x) d x=$
(c) If $\int_{3}^{5} h(x) d x=6$, then $\int_{3}^{5}(4 h(x)-3) d x=$
5. (OPTIONAL) Verify some of the properties of the definite integral stated in Lesson 8.2 using the properties of summations, the limit laws, and the definition of the definite integral:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow+\infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \cdot \frac{b-a}{n}
$$

(a) Write $\int_{a}^{a} f(x) d x$ in limit form. Show that $\int_{a}^{a} f(x) d x=0$.
(b) Write $\int_{b}^{a} f(x) d x$ in limit form. Show that $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$.
(c) Write $\int_{a}^{b} k \cdot f(x) d x$ in limit form. Show that $\int_{a}^{b} k \cdot f(x) d x=k \cdot \int_{a}^{b} f(x) d x$.
(d) Write $\int_{a}^{b}(f(x) \pm g(x)) d x$ in limit form. Show that $\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$

[^0]: * This activity has supplemental exercises.

