Activity 8.1 ${ }^{1 \dagger}$ - Sigma Notation and Summations

FOR DISCUSSION: Write down the closed form for each "summation formula:"

$$
\sum_{k=1}^{n} 1=\quad \sum_{k=1}^{n} k=\quad \sum_{k=1}^{n} k^{2}=\quad \sum_{k=1}^{n} k^{3}=
$$

1. Find the numerical value of each sum by writing out the terms and adding. (Do not use the "summation formulas" from the lesson.)
(a) $\sum_{k=2}^{5}(2 k-3)=$
(b) $\sum_{k=-1}^{4}\left(k^{2}-2 k\right)=$
2. Use the "summation formulas" to write each summation in closed form. Your answers should be in terms of n.
(a) $\sum_{k=1}^{n}\left(4 k^{3}-2\right)=$
(b) $\sum_{k=1}^{n}(1+2 k)^{2}=$
(HINT: First expand $(1+2 k)^{2}$.)

[^0]3. Use the fomulas from your answers from Problem 2 to determine the following sums.
(a) $\sum_{k=1}^{63}\left(4 k^{3}-2\right)=$
(b) $\sum_{k=1}^{40}(1+2 k)^{2}=$
4. Express each summation in closed form in terms of n. Note that n is constant with respect to k, so it can be factored out of a summation if necessary.
(a) $\sum_{k=1}^{n}\left(2+\frac{1}{n} \cdot k\right)^{2}\left(\frac{1}{n}\right)=$
(HINT: Expand $\left(2+\frac{1}{n} \cdot k\right)^{2}\left(\frac{1}{n}\right)$. .)
(b) $\sum_{k=1}^{n} 3\left(-1+\frac{2}{n} \cdot k\right)^{2}\left(\frac{2}{n}\right)=$
5. Let F be a function, and suppose $x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}$ are numbers in the domain of F. (Note that the subscripts are only labels for the numbers.) In Lesson 8.4, we will need to know a closed form for the "telescoping" sum
$$
\sum_{k=1}^{n}\left(F\left(x_{k}\right)-F\left(x_{k-1}\right)\right)
$$
(a) Write out the first three terms and simplify.
$$
\sum_{k=1}^{3}\left(F\left(x_{k}\right)-F\left(x_{k-1}\right)\right)=
$$
(b) Write out the first four terms and simplify.
$$
\sum_{k=1}^{4}\left(F\left(x_{k}\right)-F\left(x_{k-1}\right)\right)=
$$
(c) Based on Parts (a) and (b), guess a closed form for $\sum_{k=1}^{n}\left(F\left(x_{k}\right)-F\left(x_{k-1}\right)\right)$.
$$
\sum_{k=1}^{n}\left(F\left(x_{k}\right)-F\left(x_{k-1}\right)\right)=
$$
6. (OPTIONAL) In mathematics, we cannot simply make a few correct guesses and conclude that our assumption will work in all cases. We must prove that our guess works for every n. Let's write the given sum as
$$
\sum_{k=1}^{n}\left(F\left(x_{k}\right)-F\left(x_{k-1}\right)\right)=\sum_{k=1}^{n} F\left(x_{k}\right)-\sum_{k=1}^{n} F\left(x_{k-1}\right)
$$

In the second sum on the righthand side, we could start the lower index one unit earlier, end the upper index one unit earlier, and replace the ' k ' in the formula by $k+1$. Therefore,

$$
\sum_{k=1}^{n}\left(F\left(x_{k}\right)-F\left(x_{k-1}\right)\right)=\sum_{k=1}^{n} F\left(x_{k}\right)-\sum_{k=0}^{n-1} F\left(x_{k}\right)
$$

After "peeling off" the last term from the first sum and the first term from the last, we have

$$
\sum_{k=1}^{n}\left(F\left(x_{k}\right)-F\left(x_{k-1}\right)\right)=\left(F\left(x_{n}\right)+\sum_{k=1}^{n-1} F\left(x_{k}\right)\right)-\left(\sum_{k=1}^{n-1} F\left(x_{k}\right)+F\left(x_{0}\right)\right)=F\left(x_{n}\right)-F\left(x_{0}\right)
$$

Does this answer match your guess from Part 3?

[^0]: ${ }^{1}$ This activity contains new material.
 ${ }^{\dagger}$ This activity is referenced in Lesson 8.4.

