
Chapter 8 Review   

 

1. (Lesson 8.2)  Compute  dxx 
3

1

2 2  using the definition of the definite integral with right-

hand endpoints. 

 

(a) Δx = _____ 

 

(b)  = _____ 
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2. (Lesson 8.2)  Suppose an object is moving along a line with velocity 128)( 2  tttv  

miles per hour.  Without using your calculator, find the displacement and the total distance 

traveled by the object during the time interval [0, 4].  (HINT: The displacement is the integral 

of the velocity, and the total distance is the integral of the speed.) 

 

3. (Lesson 8.3)  The function xxxf 52)( 3   satisfies the hypothesis of the Mean Value 

Theorem on the interval [–1, 2].  Find all values of c in (–1, 2) that satisfy the conclusion of 

the theorem. 

 

4. (Lesson 8.4)  Use Part 1 of the Fundamental Theorem of Calculus to evaluate each definite 

integral. 
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5. (Lesson 8.5)  Use Part 2 of the Fundamental Theorem of Calculus to compute each 

derivative. 
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6. (Lesson 8.6)   

(a)  For the indefinite integral , a good choice for a u-substitution is 

 

u = _____       du = _____ 
 

After making the substitution into the integral, we have .   

 

Therefore, . 

 

(b) For the indefinite integral , a good choice for a u-substitution is  

 

u = _____       du = _____   
 

After making the substitution into the integral, we have .   

 

Therefore, . 

 

7. (Lesson 8.6)   

(a)  For the definite integral , a good choice for a u-substitution is 

 

u = _____       du = _____   
 

By Method 1, after making the substitution, changing the limits of integration, and 

simplifying, we obtain   

 . 

 

(b)  For the definite integral 
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, a good choice for a u-substitution is 

 

u = _____       du = _____   
 

By Method 1, after making the substitution, changing the limits of integration, and 

simplifying, we obtain   
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