Chapter 8 Review

- 1. (Lesson 8.2) Compute $\int_{1}^{3} (x^2 + 2) dx$ using the definition of the definite integral with right-hand endpoints.
 - (a) $\Delta x =$ _____
 - (b) $x_k^* =$ _____
 - (c) $f(x_k^*)\Delta x =$ _____
 - (d) $\sum_{k=1}^{n} f(x_k^*) \Delta x =$ (closed form)
 - (e) $\int_{1}^{3} (x^{2} + 2) dx = \lim_{n \to \infty} \left[\sum_{k=1}^{n} f(x_{k}^{*}) \Delta x \right] =$ _____
- 2. (Lesson 8.2) Suppose an object is moving along a line with velocity $v(t) = -t^2 + 8t 12$ miles per hour. Without using your calculator, find the displacement and the total distance traveled by the object during the time interval [0, 4]. (HINT: The displacement is the integral of the velocity, and the total distance is the integral of the speed.)
- 3. (Lesson 8.3) The function $f(x) = 2x^3 + 5x$ satisfies the hypothesis of the Mean Value Theorem on the interval [-1, 2]. Find all values of *c* in (-1, 2) that satisfy the conclusion of the theorem.
- 4. (Lesson 8.4) Use Part 1 of the Fundamental Theorem of Calculus to evaluate each definite integral.
 - (a) $\int_{1}^{4} \left(2 + \frac{1}{x} + \frac{3}{x^4}\right) dx$ (b) $\int_{4}^{9} \frac{5}{\sqrt{x}} dx$ (c) $\int_{-1}^{1} \frac{3}{1 + x^2} dx$
- 5. (Lesson 8.5) Use Part 2 of the Fundamental Theorem of Calculus to compute each derivative.

(a)
$$\frac{d}{dx} \left(\int_{x}^{6} t^{3} \ln(5t) dt \right)$$
 (b) $\frac{d}{dx} \left(\int_{-1}^{x^{3}} \frac{t + \cos(t^{2})}{e^{t}} dt \right)$ (c) $\frac{d}{dx} \left(\int_{2x}^{0} \frac{\tan(t)}{5t + 1} dt \right)$

6. (Lesson 8.6)

(a) For the indefinite integral $\int x^6 \sqrt{12 + x^7} dx$, a good choice for a *u*-substitution is

 $u = ___$ $du = ___$

After making the substitution into the integral, we have $\int \underline{\qquad} = \underline{\qquad}$.

Therefore,
$$\int x^6 \sqrt{12 + x^7} dx = \underline{\qquad}$$
.

- (b) For the indefinite integral $\int \frac{x+2}{x^2+4x+5} dx$, a good choice for a *u*-substitution is
 - *u* = _____ *du* = _____

After making the substitution into the integral, we have $\int \underline{\quad} = \underline{\quad}$.

Therefore,
$$\int \frac{x+2}{x^2+4x+5} dx = \underline{\qquad}.$$

- 7. (Lesson 8.6)
 - (a) For the definite integral $\int_{2}^{4} x^{3} (2 + 2x^{4})^{2} dx$, a good choice for a *u*-substitution is

u = _____ *du* = _____

By Method 1, after making the substitution, changing the limits of integration, and simplifying, we obtain

$$\int_{2}^{4} x^{3} (2 + 2x^{4})^{2} dx = \int_{----}^{-----} = \underline{\qquad} = \underline{\qquad} = \underline{\qquad}$$

(b) For the definite integral $\int_{1}^{e^{\pi}} \frac{\sin(\ln(x))}{x} dx$, a good choice for a *u*-substitution is

u = _____ *du* = _____

By Method 1, after making the substitution, changing the limits of integration, and simplifying, we obtain

