Chapter 8 Review

1. (Lesson 8.2) Compute $\int_{1}^{3}\left(x^{2}+2\right) d x$ using the definition of the definite integral with righthand endpoints.
(a) $\Delta x=$ \qquad
(b) $x_{k}^{*}=$ \qquad
(c) $f\left(x_{k}^{*}\right) \Delta x=$ \qquad
(d) $\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x=\quad$ (closed form)
(e) $\int_{1}^{3}\left(x^{2}+2\right) d x=\lim _{n \rightarrow \infty}\left[\sum_{k=1}^{n} f\left(x_{k}^{*}\right) x x\right]=$ \qquad
2. (Lesson 8.2) Suppose an object is moving along a line with velocity $v(t)=-t^{2}+8 t-12$ miles per hour. Without using your calculator, find the displacement and the total distance traveled by the object during the time interval $[0,4]$. (HINT: The displacement is the integral of the velocity, and the total distance is the integral of the speed.)
3. (Lesson 8.3) The function $f(x)=2 x^{3}+5 x$ satisfies the hypothesis of the Mean Value Theorem on the interval $[-1,2]$. Find all values of c in $(-1,2)$ that satisfy the conclusion of the theorem.
4. (Lesson 8.4) Use Part 1 of the Fundamental Theorem of Calculus to evaluate each definite integral.
(a) $\int_{1}^{4}\left(2+\frac{1}{x}+\frac{3}{x^{4}}\right) d x$
(b) $\int_{4}^{9} \frac{5}{\sqrt{x}} d x$
(c) $\int_{-1}^{1} \frac{3}{1+x^{2}} d x$
5. (Lesson 8.5) Use Part 2 of the Fundamental Theorem of Calculus to compute each derivative.
(a) $\frac{d}{d x}\left(\int_{x}^{6} t^{3} \ln (5 t) d t\right)$
(b) $\frac{d}{d x}\left(\int_{-1}^{x^{3}} \frac{t+\cos \left(t^{2}\right)}{e^{t}} d t\right)$
(c) $\frac{d}{d x}\left(\int_{2 x}^{0} \frac{\tan (t)}{5 t+1} d t\right)$
6. (Lesson 8.6)
(a) For the indefinite integral $\int x^{6} \sqrt{12+x^{7}} d x$, a good choice for a u-substitution is

$$
u=\ldots \quad d u=
$$

After making the substitution into the integral, we have \qquad $=$ \qquad .

Therefore, $\int x^{6} \sqrt{12+x^{7}} d x=$ \qquad .
(b) For the indefinite integral $\int \frac{x+2}{x^{2}+4 x+5} d x$, a good choice for a u-substitution is

$$
u=\ldots
$$

After making the substitution into the integral, we have $\int \ldots=$ \qquad .

Therefore, $\int \frac{x+2}{x^{2}+4 x+5} d x=$ \qquad .

7. (Lesson 8.6)

(a) For the definite integral $\int_{2}^{4} x^{3}\left(2+2 x^{4}\right)^{2} d x$, a good choice for a u-substitution is

$$
u=\ldots
$$

By Method 1, after making the substitution, changing the limits of integration, and simplifying, we obtain

$$
\int_{2}^{4} x^{3}\left(2+2 x^{4}\right)^{2} d x=\int_{-}^{-}=
$$

\qquad .
(b) For the definite integral $\int_{1}^{e^{\pi}} \frac{\sin (\ln (x))}{x} d x$, a good choice for a u-substitution is

$$
u=\ldots \quad d u=
$$

By Method 1, after making the substitution, changing the limits of integration, and simplifying, we obtain

$$
\int_{1}^{e^{\pi}} \frac{\sin (\ln (x))}{x} d x=\int_{-}^{-}=
$$

\qquad

