Lesson 7.5 - Differential Equations

Loosely speaking, a differential equation is an equation that contains one or more derivatives of a function y. To solve a differential equation means to find all functions y that satisfy the equation. If $y=y(t)$, then the equations $y^{\prime}=10 t$ and $y^{\prime}=10 y$ are both examples of differential equations. The first equation can be solved for y simply by integrating both sides with respect to t. That is,

$$
y^{\prime}=10 t \quad \rightarrow \quad y=5 t^{2}+C
$$

An equation like $y^{\prime}=10 y$ cannot be solved by direct integration since y is unknown. That is,

$$
y^{\prime}=10 y \quad \rightarrow \quad y=10 \int y(t) d t=? ? ?
$$

Some students are required to take an entire course in differential equations, but for now we will consider only a few basic forms. You will verify these results in Activity 7.5.

In some situations (e.g., population) the rate at which a quantity grows or decays is proportional to the quantity itself. In general, which function y satisfies $y^{\prime}= \pm k y(k>0)$? Clearly, the answer must be exponential:

$$
y^{\prime}= \pm k y \quad \rightarrow \quad y=C e^{ \pm k t}=y(0) e^{ \pm k t}
$$

This result is at the heart of Newton's Law of Cooling (see Activity 5.4). It states that the rate at which an object cools is proportional to the difference between the temperature T of the object and the constant ambient temperature T_{a}. That is, there exists a constant $k>0$ such that

$$
T^{\prime}(t)=-k\left(T(t)-T_{a}\right)
$$

If we let $y=T(t)-T_{a}$ and $T_{0}=T(0)$, then $y^{\prime}=T^{\prime}(t)$ and $y(0)=T_{0}-T_{a}$. Therefore, Newton's Law of Cooling has the form $y^{\prime}=-k y$. From above, the solution is $y=y(0) e^{-k t}$, and so $T(t)-T_{a}=y(0) e^{-k t}=\left(T_{0}-T_{a}\right) e^{-k t}$. Hence the temperature of the object at time t is given by

$$
T(t)=T_{a}+\left(T_{0}-T_{a}\right) e^{-k t}
$$

Sometimes the rate at which the rate of change of a quantity grows or decays is proportional to the quantity itself. For instance, since a spring tends to return to its equilibrium position, the acceleration of a spring is in the opposite direction of the motion of an attached mass. In general, which function y satisfies the differential equation $y^{\prime \prime}= \pm k y$? In this case, the answer depends on whether the right-hand side is positive or negative:

$$
\begin{array}{lll}
y^{\prime \prime}=k y(k>0) & \rightarrow & y=C_{1} e^{\sqrt{k} t}+C_{2} e^{-\sqrt{k} t} \\
y^{\prime \prime}=-k y(k>0) & \rightarrow & y=C_{1} \cos (\sqrt{k} t)+C_{2} \sin (\sqrt{k} t)
\end{array}
$$

