Homework 7.5 - Differential Equations

1. (1 pt) alfredLibrary/AUCI/chapter7/lessen5/checksolution1.pg If $y(t)=4 \cos (5 t)$,
then $y^{\prime}(t)=$ \qquad
and $y^{\prime \prime}(t)=$ \qquad
Therefore, y satisfies which of the following differential equations? Check all that apply.

- A. $y^{\prime}=5 y$
- B. $y^{\prime}=-5 y$
- C. $y^{\prime \prime}=25 y$
- D. $y^{\prime \prime}=-25 y$

2. (1 pt) alfredLibrary/AUCI/chapter7/lesson5/checksolution2.pg If $y(t)=6 e^{5}$,
then $y^{\prime}(t)=$ \qquad
and $y^{\prime \prime}(t)=$ \qquad
Therefore, y satisfies which of the following differential equations? Check all that apply.

- A. $y^{\prime}=5 y$
- B. $y^{\prime}=-5 y$
- C. $y^{\prime \prime}=25 y$
- D. $y^{\prime \prime}=-25 y$

3. (1 pl) alfredLibrary/AUCT/chupter7/lesson5/simplemodel1pet.pg The knowledge K (measured in volumes of research published) that a civilization can amass per year is proportional to the knowledge it currently possesses. Suppose that this civilization can continuously add 7

$$
\boldsymbol{K}^{\prime}=
$$

\qquad K, where $K(0)=$ \qquad

The solution to this problem is $K(t)=$ \qquad
4. (1 pt) alfredLibrary/AUCI/chapter7/hesson5/newtonslaw5pet.pg A cup of coffee at 193 degrees is poured into a mug and left in a room at 75 degrees. After 7 minutes, the coffee is 142 degrees. In this example, the differential equation describing Newton's Law of Cooling is $\frac{d T}{d t}=-k(T-75)$. Solve this differential equation (i.e., find a formula for $T(t)$) and answer the following questions.
(a) What is the temperature of the coffee after 17 minutes?
$T(17)=$ \qquad degrees
(b) After how many minutes will the coffee be 100 degrees?
$t=$ \qquad minutes
5. (1 pt) alfredLibrary/AUCL/chapter7/kesson5/spring1pet.pg A weight is attached to a horizontal spring that satisfies the differential equation

$$
x^{\prime \prime}=-0.01 x
$$

The units for x are centimeters, and the units for the independent variable t are seconds. Consider a "stretch" in the spring as a positive quantity, and a "compression" as a negative one.

Initially the spring is stretching at a rate of $5 \mathrm{~cm} / \mathrm{sec}$ and is stretched 5 cm from equilibrium.
(a) Write the formula for the location of the weight at time t.
$x(t)=$ \qquad cm
(b) Find the location of the weight 9 seconds after it is set in motion.
$x(9)=$ \qquad cm

