Examples 7.5 - Differential Equations

1. A cup of coffee at $200^{\circ} \mathrm{F}$ is allowed to cool in a room with a constant temperature of $75^{\circ} \mathrm{F}$. If the temperature of the coffee is $185^{\circ} \mathrm{F}$ after 3 min , what will the temperature be after 10 min ?

Solution: According to the given conditions and Newton's Law of Cooling, the temperature at time t is

$$
T(t)=T_{a}+\left(T_{0}-T_{a}\right) e^{k t}=75+(200-75) e^{-k t}=75+125 e^{-k t}
$$

We are given that $T(3)=75+125 e^{-k(3)}=185$, so $e^{-3 k}=\frac{110}{125}$, and $-3 k=\ln \left(\frac{110}{125}\right)$. It follows that $k=-\frac{1}{3} \ln \left(\frac{110}{125}\right) \approx 0.042611$. Therefore, after 10 minutes the temperature of the coffee will be $T(10)=75+125 e^{-0.042611 \cdot(10)} \approx 156.6^{\circ} \mathrm{F}$.
2. Find the general solution to the differential equation $y^{\prime \prime}=9 y$, and then find the constants C_{1} and C_{2} in the general solution given that $y(0)=1$ and $y^{\prime}(0)=15$.

Solution: The general solution is $y=C_{1} e^{\sqrt{9} t}+C_{2} e^{-\sqrt{9} t}=C_{1} e^{3 t}+C_{2} e^{-3 t}$, and the rate of change is $y^{\prime}=3 C_{1} e^{3 t}-3 C_{2} e^{-3 t}$. The condition $y(0)=1$ implies that $C_{1}+C_{2}=1$, and the condition $y^{\prime}(0)=15$ implies that $3 C_{1}-3 C_{2}=15$. Adding three times the first equation to the second equation eliminates the C_{2} terms and we find that $6 C_{1}=18$, or $C_{1}=3$. Plugging this value back into the first equation gives $C_{2}=-2$. Hence, the solution is $y=3 e^{3 t}-2 e^{-3 t}$.
3. A mass attached to a vertical spring has position $y(t)$ meters after t seconds, where y satisfies $y^{\prime \prime}=-4 y$. Positions below equilibrium and downward motion are considered positive.
(a) Find the position function if the initial position is 0.5 m and the initial velocity is $3 \mathrm{~m} / \mathrm{s}$.
(b) Find a time at which the mass is at its greatest distance from equilibrium. Use this answer to find the amplitude of the system.

Solution: (a) The general solution to $y^{\prime \prime}=-4 y$ is $y(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)$, and so the velocity function is $y^{\prime}(t)=-2 C_{1} \sin (2 t)+2 C_{2} \cos (2 t) \mathrm{m} / \mathrm{s}$. The initial conditions yield $y(0)=C_{1}=0.5$ and $y^{\prime}(0)=2 C_{2}=3$, hence the position function satisfying the given initial conditions is $y(t)=0.5 \cos (2 t)+1.5 \sin (2 t) \mathrm{m}$.
(b) The greatest distance occurs when the velocity $y^{\prime}(t)=-\sin (2 t)+3 \cos (2 t)=0$. By adding $\sin (2 t)$ to both sides and then dividing by $\cos (2 t)$, we can rewrite the equation in terms of the tangent function as $3=\frac{\sin (2 t)}{\cos (2 t)}=\tan (2 t)$. Therefore, $t=\frac{1}{2} \tan ^{-1}(3) \approx 0.625 \mathrm{~s}$, and it follows that the amplitude is $y\left(\frac{1}{2} \tan ^{-1}(3)\right)=0.5 \cos \left(2 \cdot \frac{1}{2} \tan ^{-1}(3)\right)+1.5 \sin \left(2 \cdot \frac{1}{2} \tan ^{-1}(3)\right) \approx 1.58 \mathrm{~m}$.

