Activity 7.5^{\dagger} - Differential Equations

FOR DISCUSSION: Which function has a first derivative proportional to itself?
Which function has a second derivative proportional to itself?
Which function has a second derivative proportional to its negative?

1. Write down the general solution to each differential equation.
(a) $y^{\prime}=5 y \quad \rightarrow \quad y=$
(b) $y^{\prime}=-3 y \quad \rightarrow \quad y=$
(c) $y^{\prime \prime}=25 y \quad \rightarrow \quad y=$
(d) $y^{\prime \prime}=-15 y \quad \rightarrow \quad y=$
2. A cup of coffee at $185^{\circ} \mathrm{F}$ is allowed to cool in a room with a constant temperature of $70^{\circ} \mathrm{F}$. If the temperature of the coffee is $170^{\circ} \mathrm{F}$ after 5 minutes, what will the temperature be after 15 minutes?

[^0]3. Find the general solution to the differential equation $y^{\prime \prime}-16 y=0$, and then find the constants C_{1} and C_{2} in the general solution given that $y(0)=3$ and $y^{\prime}(0)=-2$.
4. A mass attached to a vertical spring has position $y(t)$ inches after t seconds, where y satisfies $4 y^{\prime \prime}+y=0$. Positions below equilibrium and downward motion are considered positive.
Find the position function if the initial position is 1.5 inches above equilibrium and the initial velocity is $5 \mathrm{in} / \mathrm{s}$.
5. Suppose that $y=10 e^{-7 t}$, and notice that $y^{\prime}=-7\left(10 e^{-7 t}\right)=-7 y$. This computation shows that $y=10 e^{-7 t}$ is a solution to the differential equation $y^{\prime}=-7 y$.

Perform a similar computation to verify that $y=C_{0} e^{ \pm k t}$ is a solution to the differential equation $y^{\prime}= \pm k y$ for $k>0$.
6. Verify that $y=C_{1} e^{\sqrt{k} t}+C_{2} e^{-\sqrt{k} t}$ is a solution to the differential equation $y^{\prime \prime}=k y$ for $k>0$.

$$
\begin{aligned}
& y^{\prime}= \\
& y^{\prime \prime}= \\
& k y=
\end{aligned}
$$

7. Verify that $y=C_{1} \cos (\sqrt{k} t)+C_{2} \sin (\sqrt{k} t)$ is a solution to the equation $y^{\prime \prime}=-k y$ for $k>0$.

$$
\begin{aligned}
& y^{\prime}= \\
& y^{\prime \prime}= \\
& -k y=
\end{aligned}
$$

8. (OPTIONAL) In Part 5, we merely verified that any function of the form $y=C_{0} e^{ \pm k t}$ is a solution to the differential equation $y^{\prime}= \pm k y$. We will now prove that these are the only solutions. First we write $y^{\prime}= \pm k y$ in Leibniz notation as $\frac{d y}{d t}= \pm k y$. Then we "separate" the t 's and y 's to get

$$
\frac{1}{y} d y= \pm k d t
$$

(a) Integrate the left-hand side with respect to y, and integrate the right-hand side with respect to t. This will introduce a logarithm on the left-hand side. You need only include one constant of integration C, so place it on the right-hand side.
(b) Solve the result from Part (a) for y. Try to identify C_{0}.

[^0]: ${ }^{\dagger}$ This activity is referenced in Lesson 7.5.
 ${ }^{*}$ This activity has supplemental exercises.

