Quiz 7.4 - The Extreme Value Theorem and Optimization

1. (1 pt) alfredLibrary/AUCV/chapter7/esson $4 / q u i z / E V T T F 1$ pet.pg In each case, decide whether the function satisfies the hypothesis of the Extreme Value Theorem on the given interval. (Hint: The hypothesis of the EVT contains two conditions.)

Notice that you only have a limited number of attempts.

$$
\begin{aligned}
& \text { ?1. } f(x)=\frac{1}{x} \text { on }(0,3) \\
& \text { ? 2. } f(x)=x^{2} \text { on }[-2,3] \\
& \text { ? 3. } f(x)=\frac{1}{x} \text { on }\left(\frac{1}{2}, 3\right) \\
& \text { ?4. } f(x)=\sin ^{-1}(x) \text { on }\left[\frac{-1}{2}, \frac{1}{2}\right] \\
& \text { ? 5. } f(x)=x^{2} \text { on }(-2,3) \\
& \text { ?6. } f(x)=\frac{1}{x} \text { on }\left[\frac{-1}{2}, 3\right] \\
& \text { ?7. } f(x)=\frac{1}{x} \text { on }\left[\frac{1}{2}, 3\right]
\end{aligned}
$$

2. (1 pt) alfredLibrary/AUCV/chapter7/lesson4/quiz/EVT1pet.pg Let $f(x)=2 x^{3}-33 x^{2}+(-156) x$. Complete this problem without a graphing calculator.
(a) The derivative of $f(x)$ is $f^{\prime}(x)=$
(b) As a comma-separated list, the critical points of f are $x=$

Since f is continuous on the closed interval $[-3,21], f$ has both an absolute maximum and an absolute minimum on the interval $[-3,21]$ according to the Extreme Value Theorem. To find the extreme values, we evaluate f at the endpoints and at the critical points.
(c) As a comma-separated list, the y-values corresponding to the critical points and endpoints are $y=$ \qquad
(d) The minimum value of f on $[-3,21]$ is $y=$ \qquad the minimum value occurs at $x=$ \qquad and this x is $\mathrm{a}(\mathrm{n})$?.
(e) The maximum value of f on $[-3,21]$ is $y=$ \qquad the maximum value occurs at $x=$ \qquad and this x is $\mathbf{a}(\mathrm{n})$?
3. (1 pt) alfredLibrary/AUCL/chapter7/lesson4/quiz/optimizationlpet.pg
A cylindrical can without a top must be constructed to contain $V=2500 \mathrm{~cm}^{3}$ of liquid. Find the base radius r and height h that will minimize the amount of material needed to construct the can.

Base radius $r=$ \qquad cm
Height $h=$ \qquad cm

