Homework 7.4 - The Extreme Value Theorem and Optimization

1. (1 pt) alfredLibrary/AUCI/chapter7/lesson4/EVT2pet.pg

Use the Extreme Value Theorem to find the absolute maximum and absolute minimum values of $f(t)=t \sqrt{9-t^{2}}$ on the interval $[-3,3]$. Your answers should be the maximum and minimum function values, not the t-values.

Absolute maximum is \qquad

Absolute minimum is \qquad
2. (1 pt) alfredLibrary/AUCI/chapter7/esson4/optimization2pet.pg A rancher wants to fence in an area of 500000 square feet in a rectangular field and then divide it in half with a fence down the middle parallel to one side. What is the minimum amount of fencing needed to complete this task?

Minimum amount of fencing $=$ \qquad ft
3. ($\mathbf{1 p t}$) alfredLibrary/AUCI/chapter7/lesson4/optimization3pet.pg If $432 \mathrm{~cm}^{2}$ of material is available to make a box with a square base and an open top, find the largest possible volume of the box.

Largest volume $=$ \qquad cm^{3}
4. (1 pt) alfredLibrary/AUCI/chapter7/lesson4/optimization4pet.pg A fence is to be built to enclose a rectangular area of 270 square feet. The fence along three sides is to be made of material that costs 4 dollars per foot, and the material along the fourth side costs 12 dollars per foot. Find the length and width of the enclosure that is most economical to construct.

Length $=$ \qquad ft

Width $=\ldots$	ft	
5. /ptimization2pet.pg	pt)	alfredLibrary/AUCI/chapter7/lesson4/quiz-

A box is to be made out of a 8 cm by 20 cm piece of cardboard. Squares of side length $x \mathrm{~cm}$ will be cut out of each comer, and then the ends and sides will be folded up to form a box with an open top.
(a) Draw a labeled sketch.
(b) Express the volume V of the box as a function of x.
$V(x)=$ \qquad cm^{3}
(c) Give the domain of V in interval notation.

Domain $=$ \qquad
(d) Find the length L, width W, and height x of the resulting box that maximizes the volume. (Assume that $W \leq L$. That is, assume that the width W of the box is the side formed from the shorter side of cardboard, and the length L of the box is the side formed from the longer side.)
$L=$ \qquad cm
$\boldsymbol{W}=$ \qquad cm
$\boldsymbol{x}=$ \qquad cm
(e) Find the maximum volume of the box.

Maximum volume $=$ \qquad cm^{3}.

