Examples 7.4 - The Extreme Value Theorem and Optimization

1. (a) Find the absolute maximum and minimum values of $f(x)=4 x^{2}-12 x+10$ on [1, 3]. State where those values occur.
(a) Find the absolute maximum and minimum values of $g(x)=x^{2}+\frac{2000}{x}$ on $(0,+\infty)$, if they exist. State where those values occur.

Solution: (a) By the EVT, we can compare the function values at local extrema and at endpoints. Since $f^{\prime}(x)=8 x-12$, the only critical point is $x=1.5$. Now, $f(1)=2$, $f(1.5)=1$, and $f(3)=10$, so the absolute maximum is at $x=3$ and it is $f(3)=10$, and the absolute minimum is at $x=1.5$ and it is $f(1.5)=1$.
(b) Note that g is continuous and differentiable on $(0,+\infty)$. After setting $g^{\prime}(x)=2 x-\frac{2000}{x^{2}}=0$, we find that $x=10$. A sign test shows that g^{\prime} is negative to the left of 10 and positive to the right. By the corollary to the EVT, g has an absolute minimum at $x=10$, and it is $g(10)=300$.
2. Suppose a closed cylindrical can is to hold $1000 \mathrm{~cm}^{3}$ (1 liter) of liquid. Find the height and radius of the can that requires the least amount of material.

Solution: We must minimize $A(r)=2 \pi r^{2}+\frac{2000}{r}(r>0)$ (see Lesson 7.4). The derivative $A^{\prime}(r)=4 \pi r-\frac{2000}{r^{2}}$ is zero when $r=\sqrt[3]{500 / \pi}$. A sign test shows that A^{\prime} is negative to the left of $r=\sqrt[3]{500 / \pi}$ and positive to the right. By the corollary to the EVT, A has an absolute minimum value at $r=\sqrt[3]{500 / \pi}$. Therefore, a can of radius $r=\sqrt[3]{500 / \pi} \approx 5.4 \mathrm{~cm}$ and height $h=1000 /\left(\pi r^{2}\right) \approx 10.8 \mathrm{~cm}$ will require the least amount of material.
3. An open top container is to be made from a piece of 8.5 -inch by 11-inch cardboard by cutting out squares of equal size from the four corners and bending up the sides. What length should the squares be to obtain a box with the largest volume?

Solution: The relevant equation is volume $V=x(11-2 x)(8.5-2 x)=4 x^{3}-39 x^{2}+93.5 x$, which is already in terms of one variable x. Note that x cannot be negative, and it also cannot be greater than half the shorter length, or 4.25 inches. We now have a continuous function on a closed interval [0, 4.25]. The derivative of $V(x)$ is $V^{\prime}(x)=12 x^{2}-78 x+93.5$, which is zero at $x \approx 1.585$ and 4.915. The latter value is outside the domain, so the only critical point is at $x \approx 1.585$. A sign test shows that V^{\prime} is positive to the left of 1.585 and negative to the right. By the corollary to the EVT, the maximum volume will occur when $x \approx 1.585 \mathrm{in}$.

