Examples 7.4 - The Extreme Value Theorem and Optimization

1. (a) Find the absolute maximum and minimum values of $f(x)=4 x^{2}-12 x+10$ on [1, 3]. State where those values occur.
(a) Find the absolute maximum and minimum values of $g(x)=x^{2}+\frac{2000}{x}$ on $(0,+\infty)$, if they exist. State where those values occur.

Solution: (a)
(b)
2. Suppose a closed cylindrical can is to hold $1000 \mathrm{~cm}^{3}$ (1 liter) of liquid. Find the height and radius of the can that requires the least amount of material.
Solution: Equations: $\quad V=\pi r^{2} h=1000 \quad A=2 \pi r^{2}+2 \pi r h$
Function: $\quad A(r)=2 \pi r^{2}+\frac{2000}{r}, r>0$
Minimize A :

3. An open top container is to be made from a piece of 8.5 -inch by 11-inch cardboard by cutting out squares of equal size from the four corners and bending up the sides. What length should the squares be to obtain a box with the largest volume?

Solution:

