Examples 7.3 - Graph Analysis with the TI-84

We demonstrate each of the first six choices in the "calculate" menu and postpone definite integration until Chapter 8.

Consider the functions $f(x)=(x-2)^{3}-5 x+12$ and $g(x)=3 x-2$ for x in the interval [0,5]. In the function menu, we enter $\backslash \mathrm{Y}_{1}=(\mathrm{X}-2)^{\wedge} 3-5 \mathrm{X}+12$ and $\backslash \mathrm{Y}_{2}=3 \mathrm{X}-2$, and we set the viewing window as $[0,5] \times[-6,7]$.

1: Suppose we want $f(1)$ and $g(1)$. Choose 1: value, input $x=1$, and press [ENTER]. Toggle between Y_{1} and Y_{2} with the up and down arrow keys.

2: Note that f has an x-intercept between $x=2$ and $x=3$. To find it, choose $2:$ zero, and toggle to Y_{1}. Using the arrow keys, position the cursor slightly to the left of the intercept and press [ENTER]. Then position the cursor slightly to the right of the intercept and press [ENTER]. Finally, position the cursor between the chosen bounds, near the intercept, and press [ENTER].

3: A local minimum of f occurs between $x=3$ and $x=4$. Choose 3: minimum, and toggle to Y_{1}. Using the arrow keys, position the cursor slightly to the left of the minimum and press [ENTER]. Then position the cursor slightly to the right of the minimum and press [ENTER]. Finally, position the cursor between the chosen bounds, near the minimum, and press [ENTER].

4: Choose 4: maximum and repeat the same steps to find the local maximum of f between $x=0$ and $x=1$.

5: The graphs of f and g intersect once in the given window. Choose 5 :intersect, press [ENTER] when asked if Y_{1} is the "first curve," and press [ENTER] when asked if Y_{2} is the "second curve." Position the cursor near the intersection point and press [ENTER].

6: To find $f^{\prime}(2.8)$, for instance, choose $6: \mathrm{dy} / \mathrm{dx}$, toggle to Y_{1}, input $x=2.8$, and press [ENTER].

Finding an inflection point: Although the TI-84 has no menu option for finding the inflection point of f, we can get around this by finding the extrema of $f^{\prime}(x)=3(x-2)^{2}-5$. Enter $\backslash Y_{3}=3(\mathrm{X}-2)^{\wedge} 2-5$, and note that f^{\prime} has a minimum. This point represents the point on the graph of f of maximum decrease. Use 3 :minimum to find the x-coordinate of the inflection point. Plug this x back into f to find the y-coordinate of the inflection point.

