Activity 7.3 Solutions - Graph Analysis with the TI-84

1. $\mathrm{Y} 1(t)=0.169 t^{3}-1.571 t^{2}+3.778 t+1.370$ million barrels per day, where t is years after $2008,0 \leq t \leq 6$.
2. (a) $t=0.55$ years after $2008 \rightarrow$ in 2009
$t=3.10$ years after $2008 \rightarrow$ in 2012
$t=5.67$ years after $2008 \rightarrow$ in 2014
(b) $\mathrm{Y} 1(1)=3.75$ million barrels per day
(c) $\mathrm{Y}^{\prime}(1)=1.14$; This is an increase of 1.14 million barrels per day per year.
(d) At $t=1.63$ (2010), the surplus was at a maximum of $\mathrm{Y} 1=4.08$ million barrels per day.
(e) At $t=4.59$ (2013), the surplus was at a minimum of $\mathrm{Y} 1=1.91$ million barrels per day.
3. $\mathrm{Yl}^{\prime}(t)=0.506 t^{2}-3.143 t+3.778$ million barrels per day per year, where t is years after $2008,0 \leq t \leq 6$.
(a) $\mathrm{Y}^{\prime}(t)=0$ when $t=1.63$ and changes from positive to negative there. This verifies the local maximum at $t=1.63$.
$\mathrm{Y}^{\prime}(t)=0$ when $t=4.58$ and changes from negative to positive there. This verifies the local minimum at $t=4.58$.
(b) The point of most rapid decline corresponds to the minimum of the slope graph, which occurs at $t=$ 3.11. This corresponds to the year 2012. Algebraically,

$$
\mathrm{Y} 1^{\prime \prime}(t)=1.012 t-3.143=0 \text { when } t=3.11
$$

(c) $\mathrm{Yl}^{\prime}(3.11)=-1.10$; This is a decrease of 1.10 million barrels per day per year.

