Lesson 7.2 - Graph Analysis Using First and Second Derivatives

A point in the domain of f at which $f^{\prime}(x)=0$ (horizontal tangent) or $f^{\prime}(x)$ is undefined (vertical tangent or no tangent) is called a critical point of f. Here are some examples:

Note that a graph may have a peak, valley, saddle point, inflection point, a change in increase and decrease, or a change in concavity at a critical point.

Suppose x_{0} is a point in the domain of f. If $f\left(x_{0}\right) \geq f(x)$ for all x in some open interval containing x_{0}, then f has a local (or relative) maximum at x_{0}. If $f\left(x_{0}\right) \leq f(x)$ for all x in some open interval containing x_{0}, then f has a local (or relative) minimum at x_{0}. Local maxima and minima are

Minimum collectively called local extrema.

Using the first derivative for graph analysis: $f^{\prime}(x)$ is the slope (rate of change) of f at x.
(a) $f^{\prime}(x)>0$ on an interval $I \rightarrow f$ is increasing on I
(b) $f^{\prime}(x)<0$ on an interval $I \rightarrow f$ is decreasing on I

First derivative test: Let x_{0} be a critical point of f.
(a) $f^{\prime}(x)$ changes sign from + to - at $x_{0} \rightarrow f$ has a local maximum at x_{0}
(b) $f^{\prime}(x)$ changes sign from - to + at $x_{0} \rightarrow f$ has a local minimum at x_{0}
(c) $f^{\prime}(x)$ does not change sign at $x_{0} \quad \rightarrow f$ does not have a local extremum at x_{0}

Using the second derivative for graph analysis: $f^{\prime \prime}(x)$ is the slope (rate of change) of f^{\prime} at x.
(a) $f^{\prime \prime}(x)>0$ on an interval $I \rightarrow f^{\prime}$ is increasing on $I \quad \rightarrow \quad f$ is concave up on I
(b) $f^{\prime \prime}(x)<0$ on an interval $I \rightarrow f^{\prime}$ is decreasing on $I \quad \rightarrow \quad f$ is concave down on I
(c) $f^{\prime \prime}(x)$ changes sign at domain point $x_{0} \rightarrow f$ has an inflection point at x_{0}

Second derivative test: Suppose f is twice differentiable at critical point x_{0} and $f^{\prime}\left(x_{0}\right)=0$.
(a) $f^{\prime \prime}\left(x_{0}\right)>0 \rightarrow f$ has a local minimum at x_{0}
(b) $f^{\prime \prime}\left(x_{0}\right)<0 \rightarrow f$ has a local maximum at x_{0}
(c) $f^{\prime \prime}\left(x_{0}\right)=0 \rightarrow$ no conclusion (f may or may not have a local extremum at x_{0})

