Lesson 7.2 – Graph Analysis Using First and Second Derivatives

A point in the domain of f at which f'(x) = 0 (horizontal tangent) or f'(x) is undefined (vertical tangent or no tangent) is called a **critical point** of f. Here are some examples:

Note that a graph may have a peak, valley, saddle point, inflection point, a change in increase and decrease, or a change in concavity at a critical point.

> Local Maximum

Suppose x_0 is a point in the domain of f. If $f(x_0) \ge f(x)$ for all x in some open interval containing x_0 , then f has a local (or relative) maximum at x_0 . If $f(x_0) \le f(x)$ for all x in some open interval containing x_0 , then f has a Local Minimum local (or relative) minimum at x_0 . Local maxima and minima are collectively called local extrema.

Using the first derivative for graph analysis: f'(x) is the slope (rate of change) of f at x.

- (a) f'(x) > 0 on an interval $I \rightarrow f$ is increasing on I
- (b) f'(x) < 0 on an interval $I \rightarrow f$ is decreasing on I

First derivative test: Let x_0 be a critical point of f.

- (a) f'(x) changes sign from + to at $x_0 \rightarrow f$ has a local maximum at x_0
- (b) f'(x) changes sign from to + at $x_0 \rightarrow f$ has a local minimum at x_0
- (c) f'(x) does not change sign at x_0 \rightarrow f does not have a local extremum at x_0

Using the second derivative for graph analysis: f''(x) is the slope (rate of change) of f' at x.

- (a) f''(x) > 0 on an interval $I \rightarrow f'$ is increasing on $I \rightarrow f$ is concave up on I
- (b) f''(x) < 0 on an interval $I \rightarrow f'$ is decreasing on $I \rightarrow f$ is concave down on I
- (c) f''(x) changes sign at domain point $x_0 \rightarrow f$ has an inflection point at x_0

Second derivative test: Suppose f is twice differentiable at critical point x_0 and $f'(x_0) = 0$.

(a) $f''(x_0) > 0 \rightarrow f$ has a local minimum at x_0 (b) $f''(x_0) < 0 \rightarrow f$ has a local maximum at x_0 (c) $f''(x_0) = 0 \rightarrow$ no conclusion (f may or may not have a local extremum at x_0)