## Quiz 7.1 - Related Rates

1. (1 point) —alfredLibrary/AUCI/chapter7/lesson1/quiz/Leibnizpet 1 jsm For this problem, time is given by the variable $t$, position by $s$, area by $A$, and volume by $V$. Numerical answers require units.

Translate the following sentences into Leibniz notation:
(a) The position of an object is increasing at a rate of 15 meters per second.

(b) The area of an object is increasing by 35 square meters every minute.

(c) The volume of an object is decreasing by 34 cubic meters for every square meter increase in area.
$\qquad$
2. (1 point)-alfredLibrary/AUCL/chapter7/lesson1/quiz/relatedrates1pet.p A 16 -ft ladder is leaning against a wall, and the top of the ladder is sliding down the wall at a constant rate of $1.75 \mathrm{ft} / \mathrm{s}$. How fast is the bottom of the ladder sliding away from the wall when the top of the ladder is 4 ft above the ground?

## Solution:

Let $x$ be the distance from the bottom of the ladder to the wall,
and let $y$ be the distance from the top of the ladder to the ground.
Bfaw a labeled sketch!
The related variables equation is

Related Variables Equation: $\qquad$ $=256$

Implicitly differentiate both sides of the related variables equation with respect to $t$, using $x^{\prime}$ for $\frac{d x}{d t}$ and $y^{\prime}$ for $\frac{d y}{d t}$. Without simplifying further, the related rates equation is

## Related Rates Equation:

$\qquad$ $=$

BEFORE plugging in the given information, solve the Related Rates Equation for $x^{\prime}$ to get a formula for the rate at which the bottom of the ladder is sliding away from the wall:

$$
x^{\prime}=\frac{d x}{d t}=
$$

Finally, when the top of the ladder is 4 ft above the ground, the rate at which the bottom of the ladder is sliding away from the wall is

$$
\frac{d x}{d t}=\ldots \mathrm{ft} / \mathrm{s}
$$

3. (1 point)-alfredLibrary/AUCL/chapter7/lesson1/quiz/relatedrates1 1 The volume of an inflating spherical balloon is increasing by $\frac{d V}{d t}=7028 \frac{\mathrm{in}^{3}}{\mathrm{~min}}$. How fast is the radius increasing when the radius is $r=16 \mathrm{in}$ ? Recall, the volume $V$ of a sphere of radius $r$ is $V=\frac{4}{3} \pi r^{3}$.

Answer: $\qquad$ (Your answer requires units. units.)

