	and let y be the distance from the top of the ladder to the ground.
1. (1 point) —alfredLibrary/AUCI/chapter7/lesson1/quiz/Leibnizpet1jsm	athB#aw a labeled sketch!
For this problem, time is given by the variable t , position by s ,	
area by A , and volume by V . Numerical answers require <u>units</u> .	The related variables equation is
Translate the following sentences into Leibniz notation:	
(a) The position of an object is increasing at a rate of 15 meters per second.	Related Variables Equation: = 256
=	Implicitly differentiate both sides of the related variables equation with respect to t , using x' for $\frac{dx}{dt}$ and y' for $\frac{dy}{dt}$. Without simplifying further, the related rates equation is
(b) The area of an object is increasing by 35 square meters	Related Rates Equation:=
=	BEFORE plugging in the given information, solve the Related Rates Equation for x' to get a formula for the rate at which the bottom of the ladder is sliding away from the wall:
(c) The volume of an object is decreasing by 34 cubic meters for every square meter increase in area.	$x' = \frac{dx}{dt} = \underline{\hspace{1cm}}$
=	Finally, when the top of the ladder is 4 ft above the ground, the rate at which the bottom of the ladder is sliding away from the wall is
	$\frac{dx}{dt} = \underline{\qquad} ft/s$
2. (1 point) —alfredLibrary/AUCI/chapter7/lesson1/quiz/relatedrates1pe	.pg—
A 16-ft ladder is leaning against a wall, and the top of the ladder	The volume of an inflating spherical balloon is increasing by
is sliding down the wall at a constant rate of 1.75 ft/s. How fast	
is the bottom of the ladder sliding away from the wall when the top of the ladder is 4 ft above the ground?	$\frac{dV}{dt} = 7028 \frac{\text{in}^3}{\text{min}}$. How fast is the radius increasing when the radius is $r = 16$ in? Recall, the volume V of a sphere of radius r is $V = \frac{4}{3}\pi r^3$.
	3

Let x be the distance from the bottom of the ladder to the wall, Answer: ______(Your answer requires units. <u>units.</u>)

Solution: