Examples 7.1 - Related Rates

1. The radius of a spherical balloon is decreasing at a constant rate of $1.5 \mathrm{~cm} / \mathrm{min}$. How fast is air being released when the radius is 20 cm ?

Solution: An equation that relates V and r is the formula for the volume of the sphere, $V=\frac{4}{3} \pi r^{3}$. We are given that $\frac{d r}{d t}=-1.5 \mathrm{~cm} / \mathrm{min}$, and we want $\frac{d V}{d t}$ when $r=20 \mathrm{~cm}$. By implicit differentiation with respect to time,
 we have $\frac{d V}{d t}=\frac{4}{3} \pi \cdot 3 r^{2} \cdot \frac{d r}{d t}$, and by substitution, $\frac{d V}{d t}=\frac{4}{3} \pi \cdot 3(20)^{2} \cdot(-1.5) \approx-7540$. That is, when the radius is 20 cm , air is being released at a rate of about $7540 \mathrm{~cm}^{3} / \mathrm{min}$.
2. As a $20-\mathrm{ft}$ ladder leans against a wall, the top of the ladder is slipping down the wall at a rate of $2 \mathrm{ft} / \mathrm{s}$. How fast is the foot moving away from the wall when the top is 10 ft above the ground?

Solution: An equation that relates x and y is the Pythagorean Theorem, $x^{2}+y^{2}=400$. We are given that $\frac{d y}{d t}=-2 \mathrm{ft} / \mathrm{s}$, and we want $\frac{d x}{d t}$ when
 $y=10 \mathrm{ft}$. By implicit differentiation with respect to time t, we have $2 x \cdot \frac{d x}{d t}+2 y \cdot \frac{d y}{d t}=0$. Note that we are not given x when $y=10$, but we can find it from the related variables equation. Since $x^{2}+10^{2}=400$, it follows that $x=10 \sqrt{3}$. By substitution, we have $2(10 \sqrt{3}) \cdot \frac{d x}{d t}+2(10) \cdot(-2)=0$, and so $\frac{d x}{d t}=\frac{2}{\sqrt{3}} \approx 1.15$. Therefore, when the top of the ladder is 10 ft above the ground, the foot is moving away from the wall at a rate of about $1.15 \mathrm{ft} / \mathrm{s}$.
3. Suppose water is draining from a conical tank. The radius of the top of the tank is 6 ft , and the height of the tank is 16 ft . If the water flows out of the tank at a rate of $10 \mathrm{ft}^{3} / \mathrm{min}$, how fast is the height of the water decreasing when the water is 8 ft deep?

Solution: From Lesson 7.1, the related variables equation is $V=\frac{\pi}{3} r^{2} h$, and the related rates equation is $\frac{d V}{d t}=\frac{\pi}{3}\left(2 r \cdot \frac{d r}{d t} \cdot h+r^{2} \cdot \frac{d h}{d t}\right)$.
 We are given that $\frac{d V}{d t}=-10 \mathrm{ft}^{3} / \mathrm{min}$, and we want $\frac{d h}{d t}$ when $h=8 \mathrm{ft}$. Note that we do not know r and $\frac{d r}{d t}$ when $h=8 \mathrm{ft}$. To find these quantities, we need another equation that relates r and h. A logical choice is the one that is obtained by similar triangles, namely $\frac{r}{6}=\frac{h}{16}$, or $r=\frac{3}{8} h$. When $h=8$, it follows that $r=3$, and by differentiation $\frac{d r}{d t}=\frac{3}{8} \cdot \frac{d h}{d t}$. By substitution, we have $-10=\frac{\pi}{3}\left(2(3) \cdot\left(\frac{3}{8} \cdot \frac{d h}{d t}\right) \cdot(8)+(3)^{2} \cdot \frac{d h}{d t}\right)$, and so $\frac{d h}{d t}=-0.35$. Therefore, when the water is 8 ft deep, the height of the water is decreasing by about $0.35 \mathrm{ft} / \mathrm{min}$.

