Chapter 7 Review

1. (Lesson 7.1) A $20-\mathrm{ft}$ ladder is leaning against a wall, and the top of the ladder is sliding down the wall at a constant rate of $1 \mathrm{ft} / \mathrm{s}$. How fast is the bottom of the ladder sliding away from the wall when the top of the ladder is 8 ft above the ground?
2. (Lesson 7.1) Suppose oil spills from a ruptured tanker and spreads in a circular pattern. If the radius of the oil spill increases at a constant rate of $8 \mathrm{~m} / \mathrm{s}$, then how fast is the area of the spill increasing when the radius is 200 m ?
3. (Lesson 7.2) Suppose that $f(x)=3 x^{4}-16 x^{3}-192 x^{2}+49$. Practice showing all work, number lines, and sign tests. Complete this problem without a graphing calculator.
(a) Find all critical points of f.
(b) Use interval notation to indicate where f is increasing.
(c) Use interval notation to indicate where f is decreasing.
(d) Find the x-values of all local maxima of f.
(e) Find the x-values of all local minima of f.
(f) Use interval notation to indicate where f is concave up.
(g) Use interval notation to indicate where f is concave down.
(h) Find the x-values of all inflection points of f.
(i) Use all of the preceding information to sketch a graph of f.
4. (Lesson 7.4) Let $f(x)=2 x^{3}-15 x^{2}-216 x$ on the interval $[-5,16]$. Complete this problem without a graphing calculator.
(a) The derivative of f is $f^{\prime}(x)=$ \qquad .
(b) The critical points of f are $x=$ \qquad .
(c) The y-values corresponding to the critical points and endpoints are $y=$ \qquad .
(d) According to the Extreme Value Theorem, the minimum value of f on $[-5,16]$ is $y=$ \qquad , the minimum value occurs at $x=$ \qquad , and this x is a(n) \qquad (Critical point? Endpoint?).
(e) According to the Extreme Value Theorem, the maximum value of f on $[-5,16]$ is $y=$ \qquad , the maximum value occurs at $x=$ \qquad , and this x is a(n) \qquad (Critical point? Endpoint?).
5. (Lesson 7.4) An open-top box is to be constructed with $1500 \mathrm{~cm}^{2}$ of material. The length of the base is to be twice the width. Find the largest possible volume of the box.
6. (Lesson 7.4) A rancher wants to fence in an area of $2,000,000$ square feet in a rectangular field and then divide it in half with a fence down the middle parallel to one side. What is the shortest length of fence that the rancher can use?
7. (Lesson 7.4) A cylindrical can without a top must be constructed to contain $V=2000 \mathrm{~cm}^{3}$ of liquid. Find the base radius r and height h that will minimize the amount of material needed to construct the can.
8. (Lesson 7.5) Find y as a function of t if $16 y^{\prime \prime}-9 y=0, y(0)=1$, and $y^{\prime}(0)=4$. (HINT: First solve $16 y^{\prime \prime}-9 y=0$ for $y^{\prime \prime}$.)
9. (Lesson 7.5) Suppose an initial population of 1500 honeybees is changing exponentially at a rate of -4.5% per day. That is, suppose $\frac{d P}{d t}=-0.045 P$, where $P(0)=1500$. Find a formula for the population after t days.
10. (Lesson 7.5) A weight is attached to a horizontal spring that satisfies the differential equation $x^{\prime \prime}=-0.01 x$. The units for x are centimeters, and the units for the independent variable t are seconds. Initially the spring is stretching at a rate of $4 \mathrm{~cm} / \mathrm{s}$ and is compressed 3 cm from equilibrium. Assume that compression is negative and stretching is positive.
(a) Write a formula for the location of the weight at time t.
(b) Find the location of the weight 5 seconds after it is set in motion. Is the spring stretched or compressed at this time?
