Lesson 6.4 - Inverse Trigonometric Functions

The graphs of cosine, sine, and tangent all fail the horizontal line test. However, we can restrict their domains-that is, only consider a piece of each graph-to create useful inverse functions.

Inverse cosine function: $y=\cos ^{-1} x=\arccos x$

- Think of $\cos ^{-1} x$ as the angle whose cosine is x.
- Restrict the domain of cosine to $[0, \pi]$, and reflect about $y=x$.
- The domain is $[-1,1]$, and the range is $[0, \pi]$.

Inverse sine function: $y=\sin ^{-1} x=\arcsin x$

- Think of $\sin ^{-1} x$ as the angle whose sine is x.
- Restrict the domain of sine to $[-\pi / 2, \pi / 2]$, and reflect about $y=x$.
- The domain is $[-1,1]$, and the range is $[-\pi / 2, \pi / 2]$.

Inverse tangent function: $y=\tan ^{-1} x=\arctan x$

- Think of $\tan ^{-1} x$ as the angle whose tangent is x.
- Restrict the domain of tangent to $(-\pi / 2, \pi / 2)$, and reflect about $y=x$.
- The domain is $(-\infty,+\infty)$, and the range is $(-\pi / 2, \pi / 2)$.
- The vertical asymptotes of $\tan x$ at $x= \pm \pi / 2$ become horizontal
 asymptotes of $\tan ^{-1} x$. Therefore, $\lim _{x \rightarrow+\infty} \tan ^{-1} x=\frac{\pi}{2}$ and $\lim _{x \rightarrow-\infty} \tan ^{-1} x=-\frac{\pi}{2}$.

Derivatives of the inverse trigonometric functions and corresponding antiderivatives:

$$
\begin{array}{ll}
\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} & \int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+C \\
\frac{d}{d x}\left(\cos ^{-1} x\right)=\frac{-1}{\sqrt{1-x^{2}}} & \int \frac{-1}{\sqrt{1-x^{2}}} d x=\cos ^{-1} x+C \\
\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} & \int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+C
\end{array}
$$

Let us verify the derivative formula for $\sin ^{-1} x$ and derive the others in Activity 6.4. By the derivative-of-an-inverse formula,

$$
\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\cos \left(\sin ^{-1} x\right)}
$$

Since $\sin ^{-1} x$ is the angle whose sine is x, we can construct a right triangle that satisfies this condition, and then find the cosine of that angle. Hence,
 $\cos \left(\sin ^{-1}(x)\right)=\sqrt{1-x^{2}}$, and we are done.

