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Lesson 6.4 – Inverse Trigonometric Functions 

The graphs of cosine, sine, and tangent all fail the horizontal line test.  However, we can restrict 

their domains—that is, only consider a piece of each graph—to create useful inverse functions.   
 

Inverse cosine function:  xxy arccoscos 1    

 Think of x1cos  as the angle whose cosine is x. 

 Restrict the domain of cosine to [0, π], and reflect about y = x. 

 The domain is [–1, 1], and the range is [0, π]. 
 

Inverse sine function:  xxy arcsinsin 1    

 Think of x1sin  as the angle whose sine is x. 

 Restrict the domain of sine to [–π/2, π/2], and reflect about y = x. 

 The domain is [–1, 1], and the range is [–π/2, π/2]. 
 

Inverse tangent function:  xxy arctantan 1    

 Think of x1tan  as the angle whose tangent is x. 

 Restrict the domain of tangent to (–π/2, π/2), and reflect about y = x. 

 The domain is (  , ), and the range is (–π/2, π/2). 

 The vertical asymptotes of tan x at x = ±π/2 become horizontal  

asymptotes of x1tan .  Therefore,
2

1tanlim 
 xx  and 

2

1tanlim 
 xx . 

 

Derivatives of the inverse trigonometric functions and corresponding antiderivatives:   
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Let us verify the derivative formula for x1sin  and derive the others in Activity 6.4.  By the 

derivative-of-an-inverse formula, 
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Since x1sin  is the angle whose sine is x, we can construct a right triangle  

that satisfies this condition, and then find the cosine of that angle.  Hence, 

21 1))(cos(sin xx 
, and we are done. 
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