Lesson 6.4 – Inverse Trigonometric Functions

The graphs of cosine, sine, and tangent all fail the horizontal line test. However, we can restrict their domains—that is, only consider a piece of each graph—to create useful inverse functions.

Inverse cosine function: y = cos⁻¹ x = arccos x
Think of cos⁻¹ x as the angle whose cosine is x.

- Think of $\cos x$ as the angle whose cosine is x.
- Restrict the domain of cosine to $[0, \pi]$, and reflect about y = x.
- The domain is [-1, 1], and the range is $[0, \pi]$.

Inverse sine function: $y = \sin^{-1} x = \arcsin x$

- Think of $\sin^{-1} x$ as the angle whose sine is x.
- Restrict the domain of sine to $[-\pi/2, \pi/2]$, and reflect about y = x.
- The domain is [-1, 1], and the range is $[-\pi/2, \pi/2]$.

Inverse tangent function: $y = \tan^{-1} x = \arctan x$

- Think of $\tan^{-1} x$ as the angle whose tangent is x.
- Restrict the domain of tangent to $(-\pi/2, \pi/2)$, and reflect about y = x.
- The domain is $(-\infty, +\infty)$, and the range is $(-\pi/2, \pi/2)$.
- The vertical asymptotes of $\tan x$ at $x = \pm \pi/2$ become horizontal asymptotes of $\tan^{-1} x$. Therefore, $\lim_{x \to +\infty} \tan^{-1} x = \frac{\pi}{2}$ and $\lim_{x \to -\infty} \tan^{-1} x = -\frac{\pi}{2}$.

Derivatives of the inverse trigonometric functions and corresponding antiderivatives:

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}} \qquad \qquad \int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}x + C$$

$$\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}} \qquad \qquad \int \frac{-1}{\sqrt{1-x^2}} dx = \cos^{-1}x + C$$

$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2} \qquad \qquad \int \frac{1}{1+x^2} dx = \tan^{-1}x + C$$

Let us verify the derivative formula for $\sin^{-1} x$ and derive the others in Activity 6.4. By the derivative-of-an-inverse formula,

$$\frac{d}{dx}\left(\sin^{-1}x\right) = \frac{1}{\cos(\sin^{-1}x)}$$

 $=\cos^{-1}x$

 $y = \sin^{-1} x$

-π/2

 $\pi/2$

 $y = \tan^{-1} x$

Since $\sin^{-1} x$ is the angle whose sine is *x*, we can construct a right triangle that satisfies this condition, and then find the cosine of that angle. Hence, $\cos(\sin^{-1}(x)) = \sqrt{1-x^2}$, and we are done.