Lesson 6.2 - Derivatives and Antiderivatives of Cosine and Sine

Degrees and radians: Angles are typically measured in terms of degrees or radians:
1 degree $=$ A plane angle representing $\frac{1}{360}$ of a full rotation around the circle.
1 radian $=$ A plane angle representing a length of arc equal to the radius of the circle.
Conversions: Once around the circle is 360° or 2π radians. Thus, 1 radian $=\frac{180^{\circ}}{\pi} \approx 57.3^{\circ}$, and
D degrees to radians: $D^{\circ} \cdot \frac{\pi}{180^{\circ}} \quad R$ radians to degrees: $R \cdot \frac{180^{\circ}}{\pi}$
Important note: When differentiating or integrating any trigonometric function, the argument x must be in radians, not degrees. Be sure your calculator is set to radian mode!

In order to obtain the derivative formula for cosine, we will need three basic facts:

1. Graphically, we can see that the slope of the cosine graph at $x=0$ is 0 :

$$
\lim _{\Delta x \rightarrow 0} \frac{\cos (0+\Delta x)-\cos (0)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\cos (\Delta x)-1}{\Delta x}=0
$$

2. According to the TI-84, the slope of the sine graph at $x=0$ is 1 :

$$
\lim _{\Delta x \rightarrow 0} \frac{\sin (0+\Delta x)-\sin (0)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\sin (\Delta x)}{\Delta x}=1
$$

3. A sum identity: $\cos (x+\Delta x)=\cos x \cdot \cos (\Delta x)-\sin x \cdot \sin (\Delta x)$

By the definition of the derivative and the facts above,

$$
\begin{aligned}
\frac{d}{d x}(\cos x) & =\lim _{\Delta x \rightarrow 0} \frac{\cos (x+\Delta x)-\cos x}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\cos x \cdot \cos (\Delta x)-\sin x \cdot \sin (\Delta x)-\cos x}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\cos x \cdot(\cos (\Delta x)-1)}{\Delta x}-\lim _{\Delta x \rightarrow 0} \frac{\sin x \cdot \sin (\Delta x)}{\Delta x} \\
& =\cos x \cdot \lim _{\Delta x \rightarrow 0} \frac{\cos (\Delta x)-1}{\Delta x}-\sin x \cdot \lim _{\Delta x \rightarrow 0} \frac{\sin (\Delta x)}{\Delta x} \\
& =-\sin x
\end{aligned}
$$

Also, $\frac{d}{d x}(\sin x)=\frac{d}{d x}\left(\cos \left(\frac{\pi}{2}-x\right)\right)=-\sin \left(\frac{\pi}{2}-x\right) \cdot(-1)=\sin \left(\frac{\pi}{2}-x\right)=\cos x$, by the cofunction identities.

Derivatives and antiderivatives of $\cos (x)$ and $\sin (x)$:

$$
\begin{array}{ll}
\frac{d}{d x}(\sin (x))=\cos (x) & \int \cos (x) d x=\sin (x)+C \\
\frac{d}{d x}(\cos (x))=-\sin (x) & \int \sin (x) d x=-\cos (x)+C
\end{array}
$$

