Functions that model a vibrating spring, an electrical current, and the horizontal range of a kicked soccer ball involve the two most important trigonometric functions. In the unit circle, $t^{2}+u^{2}=1$, a radius lying along the positive $t$-axis creates an angle $x$ by sweeping
 counterclockwise around the circle. The first coordinate of the point on the circle is the cosine of $x$, and the second coordinate is the sine of $x$. Since $(\cos x, \sin x)$ is a point on the unit circle, the coordinates satisfy the equation of the circle, which yields the Pythagorean identity: $\cos ^{2} x+\sin ^{2} x=1$ (Note: $\operatorname{trig}^{2} x$ is shorthand for $(\operatorname{trig} x)^{2}$ )

Once around the unit circle measures $2 \pi$ units, where $\pi \approx 3.141593$.

Cosine function: $y=\cos x$
Domain: The set of all real numbers.
Range: $-1 \leq \cos x \leq 1$ for all $x$.
Roots: $\cos x=0$ at odd integer multiples of $\pi / 2$.
Graph: Continuous everywhere; period $2 \pi$.


Parity: Cosine is even; i.e., $\cos (-x)=\cos x$. Cofunction identity: The cosine graph is a shift of sine by $\pi / 2$ units to the left:

$$
\cos x=\sin \left(x+\frac{\pi}{2}\right)=\sin \left(\frac{\pi}{2}-x\right)
$$

Sine function: $y=\sin x$
Domain: The set of all real numbers.
Range: $-1 \leq \sin x \leq 1$ for all $x$.
Roots: $\sin x=0$ at integer multiples of $\pi$.
Graph: Continuous everywhere; period $2 \pi$.

Transformations: The general forms are obtained from $y=\cos x$ and $y=\sin x$ as follows:

- $|A|$ is a vertical stretch or compression called the amplitude. $A<0$ implies $x$-axis reflection.
- $|B|$ is a horizontal stretch or compression. If $B<0$, then its sign can be changed using parity.
- $2 \pi /|B|$ is the period, which tells the smallest interval after which the graph repeats.
- $|B| / 2 \pi$ is called the frequency. Note that frequency $=1$ /period.
- $C / B$ is a horizontal shift sometimes called the phase or phase shift, but this terminology may refer only to $C$ in certain contexts.

