^VLesson 6.1 – The Cosine and Sine Functions

Functions that model a vibrating spring, an electrical current, and t^{r} the horizontal range of a kicked soccer ball involve the two most important trigonometric functions. In the unit circle, $t^{2} + u^{2} = 1$, a radius lying along the positive *t*-axis creates an angle *x* by sweeping counterclockwise around the circle. The first coordinate of the point on

the circle is the **cosine** of *x*, and the second coordinate is the **sine** of *x*. Since $(\cos x, \sin x)$ is a point on the unit circle, the coordinates satisfy the equation of the circle, which yields the

Pythagorean identity: $\cos^2 x + \sin^2 x = 1$ (Note: $\operatorname{trig}^2 x$ is shorthand for $(\operatorname{trig} x)^2$)

Once around the unit circle measures 2π units, where $\pi \approx 3.141593$.

Cosine function: $y = \cos x$

Domain: The set of all real numbers. **Range:** $-1 \le \cos x \le 1$ for all *x*. **Roots:** $\cos x = 0$ at odd integer multiples of $\pi/2$. **Graph:** Continuous everywhere; period 2π .

Parity: Cosine is even; i.e., cos(-x) = cos x. **Cofunction identity:** The cosine graph is a shift of sine by $\pi/2$ units to the left:

$$\cos x = \sin\left(x + \frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2} - x\right)$$

Sine function: $y = \sin x$

Domain: The set of all real numbers. **Range:** $-1 \le \sin x \le 1$ for all *x*. **Roots:** $\sin x = 0$ at integer multiples of π . **Graph:** Continuous everywhere; period 2π .

Parity: Sine is odd; i.e., $\sin(-x) = -\sin x$. **Cofunction identity:** The sine graph is a shift of cosine by $\pi/2$ units to the right: $\sin x = \cos(x - \frac{\pi}{2}) = \cos(\frac{\pi}{2} - x)$

General forms: $y = A\cos(Bx - C) = A\cos\left(B\left(x - \frac{C}{B}\right)\right)$ and $y = A\sin(Bx - C) = A\sin\left(B\left(x - \frac{C}{B}\right)\right)$.

Transformations: The general forms are obtained from $y = \cos x$ and $y = \sin x$ as follows:

- |A| is a vertical stretch or compression called the **amplitude**. A < 0 implies x-axis reflection.
- |B| is a horizontal stretch or compression. If B < 0, then its sign can be changed using parity.
- $2\pi/|B|$ is the **period**, which tells the smallest interval after which the graph repeats.
- $|B|/2\pi$ is called the **frequency**. Note that frequency = 1/period.
- *C* / *B* is a horizontal shift sometimes called the **phase** or **phase shift**, but this terminology may refer only to *C* in certain contexts.