Examples 6.1 - The Cosine and Sine Functions

1. Suppose $y=-4 \sin \left(3 x+\frac{7 \pi}{5}\right)=-4 \sin \left(3\left(x+\frac{7 \pi}{15}\right)\right)$. Determine the amplitude, period, and phase shift of the graph.
Solution: Then the amplitude is 4 , the period is $\frac{2 \pi}{3}$, and the phase shift is $-\frac{7 \pi}{15}$, which is a shift to the left of $\frac{7 \pi}{15}$ units.
2. Let us call the horizontal line about which the graph oscillates the midline. With no vertical shift, the midline of a general cosine or sine function is the line $y=0$. Determine the amplitude, period, phase shift, and midline of the sinusoidal function $y=5 \cos (3 \pi x)-2$.
Solution: The amplitude is 5 , and the period is $\frac{2 \pi}{3 \pi}=\frac{2}{3}$. The graph has no phase shift, but it does have a vertical shift of 2 units downward, so the midline is $y=-2$.
3. For the graph shown on the right, find a sinusoidal formula of the form $y=A \cos (B x-C)+D$.
Solution: By inspection, the midline is at $D=1$, the amplitude is $A=2$, and the period is $\frac{2 \pi}{B}=4$ (so $B=\frac{\pi}{2}$). The graph has been shifted to the right by $\frac{1}{2}$ unit, which means that $\frac{C}{B}=\frac{1}{2}$. Therefore, $C=\frac{\pi}{4}$ and the equation is

$$
y=2 \cos \left(\frac{\pi}{2} x-\frac{\pi}{4}\right)+1=2 \cos \left(\frac{\pi}{2}\left(x-\frac{1}{2}\right)\right)+1
$$

4. We know that $y=\sin x$ is zero for $x=n \pi$ (n an integer), and $y=\cos x$ is zero for $x=\frac{m \pi}{2}$ (m an odd integer). What are the roots (x-intercepts) of $y=\sin \left(\frac{3 \pi}{2} x-1\right)$ and $y=\cos \left(5 x+\frac{\pi}{2}\right)$? Solution: To solve $\sin \left(\frac{3 \pi}{2} x-1\right)=0$, we set the argument $\frac{3 \pi}{2} x-1=n \pi$ and solve for x :

$$
\begin{aligned}
\frac{3 \pi}{2} x-1 & =n \pi \\
\frac{3 \pi}{2} x & =n \pi+1 \\
x & =\frac{2}{3 \pi}(n \pi+1), \text { where } n \text { is an integer. }
\end{aligned}
$$

To solve $\cos \left(5 x+\frac{\pi}{2}\right)=0$, we set $5 x+\frac{\pi}{2}=\frac{m \pi}{2}$ and solve for x. Here, we have

$$
\begin{aligned}
5 x+\frac{\pi}{2} & =\frac{m \pi}{2} \\
5 x & =\frac{m \pi}{2}-\frac{\pi}{2} \\
x & =\frac{\pi}{10}(m-1), \text { where } m \text { is an odd integer. }
\end{aligned}
$$

