Chapter 6 Review

- 1. (Lesson 6.1) Suppose $y = 4\cos(3\pi t 6) + 2$.
 - (a) The midline of the graph is the line with equation _____.
 - (b) The amplitude of the graph is _____.
 - (c) The period of the graph is _____.
 - (d) The phase shift (as C/B) is _____.
- 2. Suppose *x* is measured in radians. Find the derivative of each of the six trigonometric functions. You should memorize these formulas.

(Lesson 6.2)	(Lesson 6.3)	(Lesson 6.3)
(a) $(\sin x)' = $	(c) $(\tan x)' = $	(e) $(\sec x)' = $
(b) $(\cos x)' = $	(d) $(\cot x)' = $	(f) $(\csc x)' =$

- 3. (Lesson 6.2) The height of a tide above the ocean floor is given by $h(t) = 6.25 \sin(0.57t) + 10$ meters, where *t* is hours after noon on June 1, 2013.
 - (a) Find the height of the tide at 3:00 p.m. on June 1, 2013.
 - (b) Find the rate at which the tide is rising or falling at 3:00 p.m. on June 1, 2013.
 - (c) Find the acceleration of the tide at 3:00 p.m. on June 1, 2013.
- 4. (Lesson 6.4) Suppose *x* is measured in radians. Find the derivative of each inverse trigonometric function. You should memorize these formulas.
 - (a) $(\sin^{-1} x)' =$ ____ (b) $(\cos^{-1} x)' =$ ____ (c) $(\tan^{-1} x)' =$ ____
- 5. (Lesson 6.3)
 - (a) If $h(x) = \frac{\sec^3(x)}{\tan(3x)}$, then h'(x) =_____.

(Lesson 6.4)

- (b) If $f(x) = \sin(2x) \arctan(x)$, then f'(x) =_____.
- (c) If $g(x) = \sin^{-1}(\cos(7x))$, then g'(x) =_____.

- 6. Suppose *x* is measured in radians. Find the family of antiderivatives of each of the following functions. You should memorize these formulas.
 - (Lesson 6.2)
 (Lesson 6.3)
 (Lesson 6.3)

 (a) $\int \sin x \, dx = _$ (c) $\int \sec^2 x \, dx = _$ (e) $\int \csc^2 x \, dx = _$

 (b) $\int \cos x \, dx = _$ (d) $\int \sec x \tan x \, dx = _$ (f) $\int \csc x \cot x \, dx = _$
- 7. Evaluate each integral.
 - (Lesson 6.2) (a) $\int \frac{9x^2 + x^3 \cos x}{x^3} dx =$ _____ (b) $\int_0^{\pi/16} \sin(8\theta) d\theta =$ _____

(Lesson 6.3)

- (c) $\int \sec^2(1.8x 2.3) \, dx =$ _____
- 8. (Lesson 6.4) Evaluate each indefinite integral. You should memorize these formulas.

(a)
$$\int \frac{1}{1+x^2} dx =$$
 (b) $\int \frac{1}{\sqrt{1-x^2}} dx =$ (c) $\int \frac{-1}{\sqrt{1-x^2}} dx =$

9. (Lesson 6.4) Evaluate each integral without explicitly writing out the necessary substitution. In Part (b), you will need to rewrite the integral by dividing each term by 9.

(a)
$$\int_{0}^{0.2} \frac{4}{\sqrt{1 - (2x)^2}} dx = \underline{\qquad} |_{0}^{0.2} = \underline{\qquad}$$

(b) $\int_{1}^{4} \frac{18}{9 + x^2} dx = \underline{\qquad} |_{1}^{4} = \underline{\qquad}$
10. (Lesson 6.3) Evaluate $\lim_{x \to 0} \frac{5 \tan(4x)}{3 \sin(2x)}$ using L'Hôpital's rule.