Chapter 6 Review

1. (Lesson 6.1) Suppose $y=4 \cos (3 \pi t-6)+2$.
(a) The midline of the graph is the line with equation \qquad .
(b) The amplitude of the graph is \qquad .
(c) The period of the graph is \qquad .
(d) The phase shift (as C / B) is \qquad .
2. Suppose x is measured in radians. Find the derivative of each of the six trigonometric functions. You should memorize these formulas.
(Lesson 6.2)
(a) $(\sin x)^{\prime}=$
(b) $(\cos x)^{\prime}=$ \qquad
(Lesson 6.3)
(e) $(\sec x)^{\prime}=$ \qquad
(f) $(\csc x)^{\prime}=$ \qquad
3. (Lesson 6.2) The height of a tide above the ocean floor is given by $h(t)=6.25 \sin (0.57 t)+10$ meters, where t is hours after noon on June 1, 2013.
(a) Find the height of the tide at 3:00 p.m. on June 1, 2013.
(b) Find the rate at which the tide is rising or falling at 3:00 p.m. on June 1, 2013.
(c) Find the acceleration of the tide at 3:00 p.m. on June 1, 2013.
4. (Lesson 6.4) Suppose x is measured in radians. Find the derivative of each inverse trigonometric function. You should memorize these formulas.
(a) $\left(\sin ^{-1} x\right)^{\prime}=$ \qquad
(b) $\left(\cos ^{-1} x\right)^{\prime}=$ \qquad
(c) $\left(\tan ^{-1} x\right)^{\prime}=$ \qquad
5. (Lesson 6.3)
(a) If $h(x)=\frac{\sec ^{3}(x)}{\tan (3 x)}$, then $h^{\prime}(x)=$ \qquad .
(Lesson 6.4)
(b) If $f(x)=\sin (2 x) \arctan (x)$, then $f^{\prime}(x)=$ \qquad .
(c) If $g(x)=\sin ^{-1}(\cos (7 x))$, then $g^{\prime}(x)=$ \qquad .
6. Suppose x is measured in radians. Find the family of antiderivatives of each of the following functions. You should memorize these formulas.
(Lesson 6.2)
(Lesson 6.3)

(Lesson 6.3)

(a) $\int \sin x d x=$
(b) $\int \cos x d x=$
\qquad
(c) $\int \sec ^{2} x d x=$ \qquad
(e) $\int \csc ^{2} x d x=$ \qquad
7. Evaluate each integral.

(Lesson 6.2)

(a) $\int \frac{9 x^{2}+x^{3} \cos x}{x^{3}} d x=$ \qquad
(b) $\int_{0}^{\pi / 16} \sin (8 \theta) d \theta=$ \qquad
(Lesson 6.3)
(c) $\int \sec ^{2}(1.8 x-2.3) d x=$ \qquad
8. (Lesson 6.4) Evaluate each indefinite integral. You should memorize these formulas.
(a) $\int \frac{1}{1+x^{2}} d x=$ \qquad (b) $\int \frac{1}{\sqrt{1-x^{2}}} d x=$
(c) $\int \frac{-1}{\sqrt{1-x^{2}}} d x=$ \qquad
9. (Lesson 6.4) Evaluate each integral without explicitly writing out the necessary substitution. In Part (b), you will need to rewrite the integral by dividing each term by 9.
(a) $\int_{0}^{0.2} \frac{4}{\sqrt{1-(2 x)^{2}}} d x=\left.\longrightarrow\right|_{0} ^{0.2}=$ \qquad
(b) $\int_{1}^{4} \frac{18}{9+x^{2}} d x=\left.\square\right|_{1} ^{4}=$ \qquad
10. (Lesson 6.3) Evaluate $\lim _{x \rightarrow 0} \frac{5 \tan (4 x)}{3 \sin (2 x)}$ using L'Hôpital's rule.

