Quiz 5.6 - Definite Integrals of Exponentials and Logarithms

 We want to use left-hand, right-hand, and midpoint approximations with $n=4$ subintervals of equal width to estimate $\int_{2.25}^{6.25} e^{1.5 x} d x$.
(a) The width of each subinterval is $\Delta x=$ \qquad
(b) If we use a left-hand approximation, then the left-hand endpoints are \qquad (as a comma-separated list).

The left-hand approximation is

$$
\begin{aligned}
& L_{4}=(\\
& \\
&+- \\
&+- \\
&+- \\
&=
\end{aligned}
$$

(c) If we use a right-hand approximation, then the right-hand endpoints are \qquad (as a comma-separated list).

The right-hand approximation is
$R_{4}=($
\qquad
(d) If we use a midpoint approximation, then the midpoints are \qquad (as a comma-separated list).

The midpoint approximation is

$$
\begin{aligned}
& M_{4}=(\\
&+ \\
&+- \\
&+\square \\
&+ \\
& \hline
\end{aligned}
$$

(e) Use the Fundamental Theorem to find the exact area and compare your answer to the approximations that you found above.
$\int_{2.25}^{6.25} e^{1.5 x} d x=$

